Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Drug Resist Updat ; 72: 101017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37988981

RESUMEN

The role of ABCC4, an ATP-binding cassette transporter, in the process of platelet formation, megakaryopoiesis, is unknown. Here, we show that ABCC4 is highly expressed in megakaryocytes (MKs). Mining of public genomic data (ATAC-seq and genome wide chromatin interactions, Hi-C) revealed that key megakaryopoiesis transcription factors (TFs) interacted with ABCC4 regulatory elements and likely accounted for high ABCC4 expression in MKs. Importantly these genomic interactions for ABCC4 ranked higher than for genes with known roles in megakaryopoiesis suggesting a role for ABCC4 in megakaryopoiesis. We then demonstrate that ABCC4 is required for optimal platelet formation as in vitro differentiation of fetal liver derived MKs from Abcc4-/- mice exhibited impaired proplatelet formation and polyploidization, features required for optimal megakaryopoiesis. Likewise, a human megakaryoblastic cell line, MEG-01 showed that acute ABCC4 inhibition markedly suppressed key processes in megakaryopoiesis and that these effects were related to reduced cAMP export and enhanced dissociation of a negative regulator of megakaryopoiesis, protein kinase A (PKA) from ABCC4. PKA activity concomitantly increased after ABCC4 inhibition which was coupled with significantly reduced GATA-1 expression, a TF needed for optimal megakaryopoiesis. Further, ABCC4 protected MKs from 6-mercaptopurine (6-MP) as Abcc4-/- mice show a profound reduction in MKs after 6-MP treatment. In total, our studies show that ABCC4 not only protects the MKs but is also required for maximal platelet production from MKs, suggesting modulation of ABCC4 function might be a potential therapeutic strategy to regulate platelet production.


Asunto(s)
Plaquetas , Megacariocitos , Animales , Humanos , Ratones , Transportadoras de Casetes de Unión a ATP/metabolismo , Plaquetas/metabolismo , Diferenciación Celular , Megacariocitos/metabolismo , Mercaptopurina/farmacología , Mercaptopurina/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo
2.
Drug Resist Updat ; 73: 101066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387283

RESUMEN

ABCG2 is an important ATP-binding cassette transporter impacting the absorption and distribution of over 200 chemical toxins and drugs. ABCG2 also reduces the cellular accumulation of diverse chemotherapeutic agents. Acquired somatic mutations in the phylogenetically conserved amino acids of ABCG2 might provide unique insights into its molecular mechanisms of transport. Here, we identify a tumor-derived somatic mutation (Q393K) that occurs in a highly conserved amino acid across mammalian species. This ABCG2 mutant seems incapable of providing ABCG2-mediated drug resistance. This was perplexing because it is localized properly and retained interaction with substrates and nucleotides. Using a conformationally sensitive antibody, we show that this mutant appears "locked" in a non-functional conformation. Structural modeling and molecular dynamics simulations based on ABCG2 cryo-EM structures suggested that the Q393K interacts with the E446 to create a strong salt bridge. The salt bridge is proposed to stabilize the inward-facing conformation, resulting in an impaired transporter that lacks the flexibility to readily change conformation, thereby disrupting the necessary communication between substrate binding and transport.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Neoplasias , Humanos , Animales , Transportadoras de Casetes de Unión a ATP/metabolismo , Mutación , Resistencia a Medicamentos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Resistencia a Antineoplásicos/genética , Mamíferos/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
3.
Drug Metab Dispos ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39313329

RESUMEN

Millions of people globally are exposed to the proven human carcinogen arsenic at unacceptable levels in drinking water. In contrast, arsenic is a poor rodent carcinogen, requiring >100-fold higher doses for tumour induction, which may be explained by toxicokinetic differences between humans and mice. The human ATP-binding cassette (ABC) transporter hABCC4 mediates the cellular efflux of a diverse array of metabolites, including the GSH conjugate of the highly toxic monomethylarsonous acid (MMAIII), MMA(GS)2, and the major human urinary arsenic metabolite dimethylarsinic acid (DMAV). Our objective was to determine if mouse Abcc4 (mAbcc4) protected against and/or transported the same arsenic species as hABCC4. The anti-ABCC4 antibody M4I-10 epitope was first mapped to an octapeptide (411HVQDFTA418F) present in both hABCC4 and mAbcc4, enabling quantification of relative amounts of hABCC4/mAbcc4. mAbcc4 expressed in HEK293 cells did not protect against any of the six arsenic species tested [arsenite, arsenate, MMAIII, monomethylarsonic acid, dimethylarsinous acid or DMAV], despite displaying remarkable resistance against the antimetabolite 6-mercaptopurine (>9-fold higher than hABCC4). Furthermore, mAbcc4-enriched membrane vesicles prepared from transfected HEK293 cells did not transport MMA(GS)2 or DMAV, despite a >3-fold higher transport activity than hABCC4-enriched vesicles for the prototypic substrate 17ß-estradiol-17-(ß-D-glucuronide). Abcc4(+/+) mouse embryonic fibroblasts (MEFs) were ~3-fold more resistant to arsenate than Abcc4(-/-) MEFs; however, further characterization indicated this was not mAbcc4 mediated. Thus, under the conditions tested, arsenicals are not transported by mAbcc4, and differences between the substrate selectivity of hABCC4 and mAbcc4 seem likely to contribute to differences in human and mouse arsenic toxicokinetics. Significance Statement Toxicokinetics of the carcinogen arsenic differ among animal species. Arsenic methylation is known to contribute to this, whereas arsenic transporters have not been considered. The human ATP-binding cassette transporter hABCC4 is a high affinity transporter of toxicologically important arsenic metabolites. Here we used multiple cell models to demonstrate that mouse Abcc4 does not protect cells against, or transport, any arsenic species tested. Thus, differences between hABCC4 and mAbcc4 substrate selectivity likely contribute to differences in human and mouse arsenic toxicokinetics.

4.
Drug Metab Dispos ; 51(8): 904-922, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37438132

RESUMEN

Over the past two decades, technological advances in membrane protein structural biology have provided insight into the molecular mechanisms that transporters use to move diverse substrates across the membrane. However, the plasticity of these proteins' ligand binding pockets, which allows them to bind a range of substrates, also poses a challenge for drug development. Here we highlight the structure, function, and transport mechanism of ATP-binding cassette/solute carrier transporters that are related to several diseases and multidrug resistance: ABCB1, ABCC1, ABCG2, SLC19A1, and SLC29A1. SIGNIFICANCE STATEMENT: ATP-binding cassette transporters and solute carriers play vital roles in clinical chemotherapeutic outcomes. This paper describes the current understanding of the structure of five pharmacologically relevant transporters and how they interact with their ligands.


Asunto(s)
Proteínas de Transporte de Membrana , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Microscopía por Crioelectrón , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos
5.
Pharmacol Rev ; 72(3): 668-691, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571983

RESUMEN

Eliminating cancer was once thought of as a war. This analogy is still apt today; however, we now realize that cancer is a much more formidable enemy than scientists originally perceived, and in some cases, it harbors a profound ability to thwart our best efforts to defeat it. However, before we were aware of the complexity of cancer, chemotherapy against childhood acute lymphoblastic leukemia (ALL) was successful because it applied the principles of pharmacology. Herein, we provide a historic perspective of the experience at St. Jude Children's Research Hospital. In 1962, when the hospital opened, fewer than 3% of patients experienced durable cure. Through judicious application of pharmacologic principles (e.g., combination therapy with agents using different mechanisms of action) plus appropriate drug scheduling, dosing, and pharmacodynamics, the survival of patients with ALL now exceeds 90%. We contrast this approach to treating ALL with the contemporary approach to treating medulloblastoma, in which genetics and molecular signatures are being used to guide the development of more-efficacious treatment strategies with minimal toxicity. Finally, we highlight the emerging technologies that can sustain and propel the collaborative efforts to squeeze the life out of these cancers. SIGNIFICANCE STATEMENT: Up until the early 1960s, chemotherapy for childhood acute lymphoblastic leukemia was mostly ineffective. This changed with the knowledge and implementation of rational approaches to combination therapy. Although the therapeutics of brain cancers such as medulloblastoma are not as refined (in part because of the blood-brain barrier obstacle), recent extraordinary advances in knowledge of medulloblastoma pathobiology has led to innovations in disease classification accompanied with strategies to improve therapeutic outcomes. Undoubtedly, additional novel approaches, such as immunological therapeutics, will open new avenues to further the goal of taming cancer.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Meduloblastoma/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias Encefálicas/metabolismo , Humanos , Meduloblastoma/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ensayos Clínicos Controlados Aleatorios como Asunto
6.
FASEB J ; 35(2): e21304, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33417247

RESUMEN

Multidrug resistance protein 4 (Mrp4) is an efflux transporter known to transport several xenobiotics and endogenous molecules. We recently identified that the lack of Mrp4 increases adipose tissue and body weights in mice. However, the role of Mrp4 in adipose tissue physiology are unknown. The current study aimed at characterizing these specific roles of Mrp4 using wild-type (WT) and knockout (Mrp4-/- ) mice. Our studies determined that Mrp4 is expressed in mouse adipose tissue and that the lack of Mrp4 expression is associated with adipocyte hypertrophy. Furthermore, the lack of Mrp4 increased blood glucose and leptin levels, and impaired glucose tolerance. Additionally, in 3T3-L1 cells and human pre-adipocytes, pharmacological inhibition of Mrp4 increased adipogenesis and altered expression of adipogenic genes. Lack of Mrp4 activity in both of our in vivo and in vitro models leads to increased activation of adipose tissue cAMP response element-binding protein (Creb) and decreased plasma prostaglandin E (PGE) metabolite levels. These changes in Creb activation, coupled with decreased PGE levels, together promoted the observed metabolic phenotype in Mrp4-/- mice. In conclusion, our results indicate that Mrp4 as a novel genetic factor involved in the pathogenesis of metabolic diseases, such as obesity and diabetes.


Asunto(s)
Diabetes Mellitus/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Obesidad/metabolismo , Adipocitos/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Animales , Western Blotting , Calorimetría , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Diabetes Mellitus/genética , Humanos , Ratones , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Obesidad/genética , RNA-Seq
7.
Molecules ; 27(17)2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36080214

RESUMEN

IWR-1-endo, a small molecule that potently inhibits the Wnt/ß-catenin signaling pathway by stabilizing the AXIN2 destruction complex, can inhibit drug efflux at the blood−brain barrier. To conduct murine cerebral microdialysis research, validated, sensitive, and reliable liquid chromatography−tandem mass spectrometry (LC-MS/MS) methods were used to determine IWR-1-endo concentration in the murine plasma and brain microdialysate. IWR-1-endo and the internal standard (ISTD) dabrafenib were extracted from murine plasma and microdialysate samples by a simple solid-phase extraction protocol performed on an Oasis HLB µElution plate. Chromatographic separation was executed on a Kinetex C18 (100A, 50 × 2.1 mm, 4 µm particle size) column with a binary gradient of water and acetonitrile, each having 0.1% formic acid, pumped at a flow rate of 0.6 mL/min. Detection by mass spectrometry was conducted in the positive selected reaction monitoring ion mode by monitoring mass transitions 410.40 > 344.10 (IWR-1-endo) and 520.40 > 307.20 (ISTD). The validated curve range of IWR-1-endo was 5−1000 ng/mL for the murine plasma method (r2 ≥ 0.99) and 0.5−500 ng/mL for the microdialysate method (r2 ≥ 0.99). The lower limit of quantification (LLOQ) was 5 ng/mL and 0.5 ng/mL for the murine plasma and microdialysate sample analysis method, respectively. Negligible matrix effects were observed in murine plasma and microdialysate samples. IWR-1-endo was extremely unstable in murine plasma. To improve the stability of IWR-1-endo, pH adjustments of 1.5 were introduced to murine plasma and microdialysate samples before sample storage and processing. With pH adjustment of 1.5 to the murine plasma and microdialysate samples, IWR-1-endo was stable across several tested conditions such as benchtop, autosampler, freeze−thaw, and long term at −80 °C. The LC-MS/MS methods were successfully applied to a murine pharmacokinetic and cerebral microdialysis study to characterize the unbound IWR-1-endo exposure in brain extracellular fluid and plasma.


Asunto(s)
Espectrometría de Masas en Tándem , Vía de Señalización Wnt , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ratones , Microdiálisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
8.
Blood ; 133(23): 2518-2528, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30971389

RESUMEN

The microRNA (miRNA) locus miR-144/451 is abundantly expressed in erythrocyte precursors, facilitating their terminal maturation and protecting against oxidant stress. However, the full repertoire of erythroid miR-144/451 target messenger RNAs (mRNAs) and associated cellular pathways is unknown. In general, the numbers of mRNAs predicted to be targeted by an miRNA vary greatly from hundreds to thousands, and are dependent on experimental approaches. To comprehensively and accurately identify erythroid miR-144/451 target mRNAs, we compared gene knockout and wild-type fetal liver erythroblasts by RNA sequencing, quantitative proteomics, and RNA immunoprecipitation of Argonaute (Ago), a component of the RNA-induced silencing complex that binds miRNAs complexed to their target mRNAs. Argonaute bound ∼1400 erythroblast mRNAs in a miR-144/451-dependent manner, accounting for one-third of all Ago-bound mRNAs. However, only ∼100 mRNAs were stabilized after miR-144/451 loss. Thus, miR-144 and miR-451 deregulate <10% of mRNAs that they bind, a characteristic that likely applies generally to other miRNAs. Using stringent selection criteria, we identified 53 novel miR-144/451 target mRNAs. One of these, Cox10, facilitates the assembly of mitochondrial electron transport complex IV. Loss of miR-144/451 caused increased Cox10 mRNA and protein, accumulation of complex IV, and increased mitochondrial membrane potential with no change in mitochondrial mass. Thus, miR-144/451 represses mitochondrial respiration during erythropoiesis by inhibiting the production of Cox10.


Asunto(s)
Transferasas Alquil y Aril/biosíntesis , Eritropoyesis/genética , Regulación de la Expresión Génica/genética , Proteínas de la Membrana/biosíntesis , MicroARNs/genética , Transferasas Alquil y Aril/genética , Animales , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados
9.
FASEB J ; 34(4): 4890-4903, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32067270

RESUMEN

ATP-binding cassette sub-family G member 2 (ABCG2) is a homodimeric ATP-binding cassette (ABC) transporter that not only has a key role in helping cancer cells to evade the cytotoxic effects of chemotherapy, but also in protecting organisms from multiple xeno- and endobiotics. Structural studies indicate that substrate and inhibitor (ligands) binding to ABCG2 can be differentiated quantitatively by the number of amino acid contacts, with inhibitors displaying more contacts. Although binding is the obligate initial step in the transport cycle, there is no empirical evidence for one amino acid being primarily responsible for ligand binding. By mutagenesis and biochemical studies, we demonstrated that the phylogenetically conserved amino acid residue, F439, was critical for both transport and the binding of multiple substrates and inhibitors. Structural modeling implied that the π-π interactions from each F439 monomer mediated the binding of a surprisingly diverse array of structurally unrelated substrates and inhibitors and that this symmetrical π-π interaction "clamps" the ligand into the binding pocket. Key molecular features of diverse ABCG2 ligands using the π-π clamp along with structural studies created a pharmacophore model. These novel findings have important therapeutic implications because key properties of ligands interacting with ABCG2 have been disovered. Furthermore, mechanistic insights have been revealed by demonstrating that for ABCG2 a single amino acid is essential for engaging and initiating transport of multiple drugs and xenobiotics.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/antagonistas & inhibidores , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Sitios de Unión , Células Cultivadas , Células HEK293 , Humanos , Lapatinib/análogos & derivados , Lapatinib/farmacología , Ratones , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología
10.
Genes Dev ; 27(12): 1351-64, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23788622

RESUMEN

MCL-1 is an essential BCL-2 family member that promotes the survival of multiple cellular lineages, but its role in cardiac muscle has remained unclear. Here, we report that cardiac-specific ablation of Mcl-1 results in a rapidly fatal, dilated cardiomyopathy manifested by a loss of cardiac contractility, abnormal mitochondria ultrastructure, and defective mitochondrial respiration. Strikingly, genetic ablation of both proapoptotic effectors (Bax and Bak) could largely rescue the lethality and impaired cardiac function induced by Mcl-1 deletion. However, while the overt consequences of Mcl-1 loss were obviated by combining with the loss of Bax and Bak, mitochondria from the Mcl-1-, Bax-, and Bak-deficient hearts still revealed mitochondrial ultrastructural abnormalities and displayed deficient mitochondrial respiration. Together, these data indicate that merely blocking cell death is insufficient to completely overcome the need for MCL-1 function in cardiomyocytes and suggest that in cardiac muscle, MCL-1 also facilitates normal mitochondrial function. These findings are important, as specific MCL-1-inhibiting therapeutics are being proposed to treat cancer cells and may result in unexpected cardiac toxicity.


Asunto(s)
Proteínas Proto-Oncogénicas c-bcl-2/genética , Animales , Respiración de la Célula/genética , Supervivencia Celular/genética , Insuficiencia Cardíaca/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias/genética , Músculo Esquelético/citología , Músculo Esquelético/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Miocardio/citología , Miocardio/patología , Consumo de Oxígeno/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Eliminación de Secuencia , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética
11.
Exp Cell Res ; 379(1): 55-64, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30922922

RESUMEN

Metabolic studies of human pluripotent stem cells (hPSCs) have focused on how the cells produce energy through the catabolic pathway. The less-studied anabolic pathway, by which hPSCs expend energy in the form of adenosine triphosphate (ATP), is not yet fully understood. Compared to fully differentiated somatic cells, hPSCs undergo significant changes not only in their gene expression but also in their production and/or expenditure of ATP. Here, we investigate how hPSCs tightly control their energy homeostasis by studying the main energy-consuming process, mRNA translation. In addition, change of subcellular organelles regarding energy homeostasis has been investigated. Lysosomes are organelles that play an important role in the elimination of unnecessary cellular materials by digestion and in the recycling system of the cell. We have found that hPSCs control their lysosome numbers in part by regulating lysosomal gene/protein expression. Thus, because the levels of mRNA translation rate are lower in hPSCs than in somatic cells, not only the global translational machinery but also the lysosomal recycling machinery is suppressed in hPSCs. Overall, the results of our study suggest that hPSCs reprogram gene expression and signaling to regulate energy-consuming processes and energy-controlling organelles.


Asunto(s)
Metabolismo Energético/fisiología , Orgánulos/metabolismo , Células Madre Pluripotentes/metabolismo , Adenosina Trifosfato/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Expresión Génica/fisiología , Homeostasis/fisiología , Humanos , Lisosomas/metabolismo , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Transducción de Señal/fisiología
12.
Hepatology ; 67(4): 1531-1545, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29091294

RESUMEN

Bile salt export pump (BSEP) adenosine triphosphate-binding cassette B11 (ABCB11) is a liver-specific ABC transporter that mediates canalicular bile salt excretion from hepatocytes. Human mutations in ABCB11 cause progressive familial intrahepatic cholestasis type 2. Although over 150 ABCB11 variants have been reported, our understanding of their biological consequences is limited by the lack of an experimental model that recapitulates the patient phenotypes. We applied CRISPR/Cas9-based genome editing technology to knock out abcb11b, the ortholog of human ABCB11, in zebrafish and found that these mutants died prematurely. Histological and ultrastructural analyses showed that abcb11b mutant zebrafish exhibited hepatocyte injury similar to that seen in patients with progressive familial intrahepatic cholestasis type 2. Hepatocytes of mutant zebrafish failed to excrete the fluorescently tagged bile acid that is a substrate of human BSEP. Multidrug resistance protein 1, which is thought to play a compensatory role in Abcb11 knockout mice, was mislocalized to the hepatocyte cytoplasm in abcb11b mutant zebrafish and in a patient lacking BSEP protein due to nonsense mutations in ABCB11. We discovered that BSEP deficiency induced autophagy in both human and zebrafish hepatocytes. Treatment with rapamycin restored bile acid excretion, attenuated hepatocyte damage, and extended the life span of abcb11b mutant zebrafish, correlating with the recovery of canalicular multidrug resistance protein 1 localization. CONCLUSIONS: Collectively, these data suggest a model that rapamycin rescues BSEP-deficient phenotypes by prompting alternative transporters to excrete bile salts; multidrug resistance protein 1 is a candidate for such an alternative transporter. (Hepatology 2018;67:1531-1545).


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Bilis/metabolismo , Colestasis Intrahepática/genética , Hepatocitos/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Animales , Autofagia/genética , Colestasis Intrahepática/patología , Femenino , Humanos , Inmunosupresores/farmacología , Lactante , Hígado/patología , Masculino , Mutación , Sirolimus/farmacología , Pez Cebra/metabolismo
13.
Drug Metab Dispos ; 46(5): 567-580, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29514827

RESUMEN

ATP-binding cassette (ABC) transporters are transmembrane efflux transporters mediating the extrusion of an array of substrates ranging from amino acids and lipids to xenobiotics, and many therapeutic compounds, including anticancer drugs. The ABC transporters are also recognized as important contributors to pharmacokinetics, especially in drug-drug interactions and adverse drug effects. Drugs and xenobiotics, as well as pathologic conditions, can influence the transcription of ABC transporters, or modify their activity or intracellular localization. Kinases can affect the aforementioned processes for ABC transporters as do protein interactions. In this review, we focus on the ABC transporters ABCB1, ABCB11, ABCC1, ABCC4, and ABCG2 and illustrate how kinases and protein-protein interactions affect these transporters. The clinical relevance of these factors is currently unknown; however, these examples suggest that our understanding of drug-drug interactions will benefit from further knowledge of how kinases and protein-protein interactions affect ABC transporters.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Antineoplásicos/metabolismo , Interacciones Farmacológicas/fisiología , Fosfotransferasas/metabolismo , Animales , Transporte Biológico/fisiología , Humanos
15.
Blood ; 126(20): 2307-19, 2015 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-26405223

RESUMEN

Controlling the activation of platelets is a key strategy to mitigate cardiovascular disease. Previous studies have suggested that the ATP-binding cassette (ABC) transporter, ABCC4, functions in platelet-dense granules. Using plasma membrane biotinylation and super-resolution microscopy, we demonstrate that ABCC4 is primarily expressed on the plasma membrane of both mouse and human platelets. Platelets lacking ABCC4 have unchanged dense-granule function, number, and volume, but harbor a selective impairment in collagen-induced aggregation. Accordingly, Abcc4 knockout (KO) platelet attachment to a collagen substratum was also faulty and associated with elevated intracellular cyclic AMP (cAMP) and reduced plasma membrane localization of the major collagen receptor, GPVI. In the ferric-chloride vasculature injury model, Abcc4 KO mice exhibited markedly impaired thrombus formation. The attenuation of platelet aggregation by the phosphodiesterase inhibitor EHNA (a non-ABCC4 substrate), when combined with Abcc4 deficiency, illustrated a crucial functional interaction between phosphodiesterases and ABCC4. This was extended in vivo where EHNA dramatically prolonged the bleeding time, but only in Abcc4 KO mice. Further, we demonstrated in human platelets that ABCC4 inhibition, when coupled with phosphodiesterase inhibition, strongly impaired platelet aggregation. These findings have important clinical implications because they directly highlight an important relationship between ABCC4 transporter function and phosphodiesterases in accounting for the cAMP-directed activity of antithrombotic agents.


Asunto(s)
Plaquetas/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Agregación Plaquetaria , Adenina/análogos & derivados , Adenina/farmacología , Animales , Plaquetas/patología , AMP Cíclico/genética , AMP Cíclico/metabolismo , Humanos , Ratones , Ratones Noqueados , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Inhibidores de Fosfodiesterasa/farmacología , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Trombosis/genética , Trombosis/metabolismo , Trombosis/patología
16.
Int J Mol Sci ; 18(12)2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-29186899

RESUMEN

The delivery of cancer chemotherapy to treat brain tumors remains a challenge, in part, because of the inherent biological barrier, the blood-brain barrier. While its presence and role as a protector of the normal brain parenchyma has been acknowledged for decades, it is only recently that the important transporter components, expressed in the tightly knit capillary endothelial cells, have been deciphered. These transporters are ATP-binding cassette (ABC) transporters and, so far, the major clinically important ones that functionally contribute to the blood-brain barrier are ABCG2 and ABCB1. A further limitation to cancer therapy of brain tumors or brain metastases is the blood-tumor barrier, where tumors erect a barrier of transporters that further impede drug entry. The expression and regulation of these two transporters at these barriers, as well as tumor derived alteration in expression and/or mutation, are likely obstacles to effective therapy.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Humanos
17.
J Biol Chem ; 290(18): 11246-57, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25762723

RESUMEN

Diarrhea is one of the most common adverse side effects observed in ∼7% of individuals consuming Food and Drug Administration (FDA)-approved drugs. The mechanism of how these drugs alter fluid secretion in the gut and induce diarrhea is not clearly understood. Several drugs are either substrates or inhibitors of multidrug resistance protein 4 (MRP4), such as the anti-colon cancer drug irinotecan and an anti-retroviral used to treat HIV infection, 3'-azido-3'-deoxythymidine (AZT). These drugs activate cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluid secretion by inhibiting MRP4-mediated cAMP efflux. Binding of drugs to MRP4 augments the formation of MRP4-CFTR-containing macromolecular complexes that is mediated via scaffolding protein PDZK1. Importantly, HIV patients on AZT treatment demonstrate augmented MRP4-CFTR complex formation in the colon, which defines a novel paradigm of drug-induced diarrhea.


Asunto(s)
AMP Cíclico/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Diarrea/inducido químicamente , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Animales , Camptotecina/efectos adversos , Camptotecina/análogos & derivados , Aprobación de Drogas , Células HT29 , Humanos , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Irinotecán , Ratones , Modelos Moleculares , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/deficiencia , Conformación Proteica , Estados Unidos , United States Food and Drug Administration
18.
Annu Rev Pharmacol Toxicol ; 53: 231-53, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23072381

RESUMEN

Cyclic nucleotides [e.g., cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP)] are ubiquitous second messengers that affect multiple cell functions from maturation of the egg to cell division, growth, differentiation, and death. The concentration of cAMP can be regulated by processes within membrane domains (local regulation) as well as throughout a cell (global regulation). The phosphodiesterases (PDEs) that degrade cAMP have well-known roles in both these processes. It has recently been discovered that ATP-binding cassette (ABC) transporters contribute to both local and global regulation of cAMP. This regulation may require the formation of macromolecular complexes. Some of these transporters are ubiquitously expressed, whereas others are more tissue restricted. Because some PDE inhibitors are also ABC transporter inhibitors, it is conceivable that the therapeutic benefits of their use result from the combined inhibition of both PDEs and ABC transporters. Deciphering the individual contributions of PDEs and ABC transporters to such drug effects may lead to improved therapeutic benefits.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Animales , Humanos
19.
Arterioscler Thromb Vasc Biol ; 34(4): 751-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24504733

RESUMEN

OBJECTIVE: The ATP-binding cassette (ABC) transporter B6 (ABCB6) is highly expressed in megakaryocyte progenitors, but its role in platelet production and disease has not been elucidated. APPROACH AND RESULTS: Among various ABC transporters, ABCB6 was highly expressed in megakaryocyte progenitors, exhibiting the same pattern of expression of genes involved in heme synthesis pathway. Transplantation of Abcb6 deficient (Abcb6(-/-)) bone marrow into low density lipoprotein receptor deficient recipient mice resulted in expansion and proliferation of megakaryocyte progenitors, attributable to increased reactive oxygen species production in response to porphyrin loading. The enhanced megakaryopoiesis in Abcb6(-/-) bone marrow-transplanted mice was further illustrated by increased platelet counts, mean platelet volume, and platelet activity. Platelets from Abcb6(-/-) bone marrow-transplanted mice had higher levels of chemokine (C-C motif) ligand 5, which was associated with increased plasma chemokine (C-C motif) ligand 5 levels. There were also increased platelet-leukocyte aggregates, which resulted in leukocyte activation. Abcb6(-/-) bone marrow-transplanted mice had accelerated atherosclerosis which was associated with deposition of the chemotactic agent, chemokine (C-C motif) ligand 5 in atherosclerotic plaques, resulting in increased macrophage accumulation. CONCLUSIONS: Our findings identify a new role of ABCB6 in preventing atherosclerosis development by dampening platelet production, reactivity, and chemokine (C-C motif) ligand 5 deposition in atherosclerotic lesions.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/deficiencia , Aterosclerosis/metabolismo , Plaquetas/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Aterosclerosis/sangre , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Trasplante de Médula Ósea , Proliferación Celular , Células Cultivadas , Quimiocina CCL5/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria , Especies Reactivas de Oxígeno/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Trombopoyesis , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA