RESUMEN
Li et al. (2022) discover that Toxoplasma infection triggers remodeling of the mitochondrial outer membrane through generation of a mitochondrial subdomain termed "structure positive for outer mitochondrial membrane" (SPOT).
Asunto(s)
Membranas Mitocondriales , Toxoplasma , Mitocondrias , Membranas Mitocondriales/metabolismo , Toxoplasma/genéticaRESUMEN
Amino acids are essential building blocks of life. However, increasing evidence suggests that elevated amino acids cause cellular toxicity associated with numerous metabolic disorders. How cells cope with elevated amino acids remains poorly understood. Here, we show that a previously identified cellular structure, the mitochondrial-derived compartment (MDC), functions to protect cells from amino acid stress. In response to amino acid elevation, MDCs are generated from mitochondria, where they selectively sequester and deplete SLC25A nutrient carriers and their associated import receptor Tom70 from the organelle. Generation of MDCs promotes amino acid catabolism, and their formation occurs simultaneously with transporter removal at the plasma membrane via the multivesicular body (MVB) pathway. The combined loss of vacuolar amino acid storage, MVBs, and MDCs renders cells sensitive to high amino acid stress. Thus, we propose that MDCs operate as part of a coordinated cell network that facilitates amino acid homeostasis through post-translational nutrient transporter remodeling.
Asunto(s)
Aminoácidos/metabolismo , Mitocondrias/metabolismo , Estrés Fisiológico/fisiología , Adaptación Fisiológica , Aminoácidos/toxicidad , Proteínas Portadoras/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/metabolismo , Cuerpos Multivesiculares/metabolismo , Transportadores de Anión Orgánico/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismoRESUMEN
Two protein translocases transport precursor proteins into or across the inner mitochondrial membrane. The presequence translocase (TIM23 complex) sorts precursor proteins with a cleavable presequence either into the matrix or into the inner membrane. The carrier translocase (TIM22 complex) inserts multispanning proteins into the inner membrane. Both protein import pathways depend on the presence of a membrane potential, which is generated by the activity of the respiratory chain. The non-bilayer-forming phospholipids cardiolipin and phosphatidylethanolamine are required for the activity of the respiratory chain and therefore to maintain the membrane potential for protein import. Depletion of cardiolipin further affects the stability of the TIM23 complex. The role of bilayer-forming phospholipids like phosphatidylcholine (PC) in protein transport into the inner membrane and the matrix is unknown. Here, we report that import of presequence-containing precursors and carrier proteins is impaired in PC-deficient mitochondria. Surprisingly, depletion of PC does not affect stability and activity of respiratory supercomplexes, and the membrane potential is maintained. Instead, the dynamic TIM23 complex is destabilized when the PC levels are reduced, whereas the TIM22 complex remains intact. Our analysis further revealed that initial precursor binding to the TIM23 complex is impaired in PC-deficient mitochondria. We conclude that reduced PC levels differentially affect the TIM22 and TIM23 complexes in mitochondrial protein transport.
Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Membrana/genética , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Fosfatidilcolinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Mitocondrias/fisiología , Paraplejía/genética , Proteínas de Unión al GTP rho/genética , Adenosina Trifosfato/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Transporte Axonal/fisiología , Calcio/metabolismo , Respiración de la Célula/fisiología , Femenino , Masculino , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Neuronas Motoras/metabolismo , Paraplejía/metabolismo , Paraplejía/patología , Fenotipo , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Two protein translocases drive the import of ß-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the ß-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of ß-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of ß-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of ß-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial ß-barrel biogenesis.
Asunto(s)
Proteínas Mitocondriales/metabolismo , Fosfatidilcolinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/genética , Fosfatidilcolinas/genética , Transporte de Proteínas/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genéticaRESUMEN
The mitochondrial outer membrane contains integral α-helical and ß-barrel proteins that are imported from the cytosol. The machineries importing ß-barrel proteins have been identified, however, different views exist on the import of α-helical proteins. It has been reported that the biogenesis of Om45, the most abundant signal-anchored protein, does not depend on proteinaceous components, but involves direct insertion into the outer membrane. We show that import of Om45 occurs via the translocase of the outer membrane and the presequence translocase of the inner membrane. Assembly of Om45 in the outer membrane involves the MIM machinery. Om45 thus follows a new mitochondrial biogenesis pathway that uses elements of the presequence import pathway to direct a protein to the outer membrane.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/fisiología , Transporte de Proteínas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Autorradiografía , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutagénesis , Reacción en Cadena de la Polimerasa , Estructura Secundaria de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
The outer mitochondrial membrane (OMM) creates a boundary that imports most of the mitochondrial proteome while removing extraneous or damaged proteins. How the OMM senses aberrant proteins and remodels to maintain OMM integrity remains unresolved. Previously, we identified a mitochondrial remodeling mechanism called the mitochondrial-derived compartment (MDC) that removes a subset of the mitochondrial proteome. Here, we show that MDCs specifically sequester proteins localized only at the OMM, providing an explanation for how select mitochondrial proteins are incorporated into MDCs. Remarkably, selective sorting into MDCs also occurs within the OMM, as subunits of the translocase of the outer membrane (TOM) complex are excluded from MDCs unless assembly of the TOM complex is impaired. Considering that overloading the OMM with mitochondrial membrane proteins or mistargeted tail-anchored membrane proteins induces MDCs to form and sequester these proteins, we propose that one functional role of MDCs is to create an OMM-enriched trap that segregates and sequesters excess proteins from the mitochondrial surface.
Asunto(s)
Mitocondrias , Membranas Mitocondriales , Proteínas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Transporte de Proteínas , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteoma/metabolismoRESUMEN
In this issue of Cell Metabolism, Herkenne et al. (2020) show that the mitochondrial fusion protein OPA1 promotes angiogenesis independent of its function in mitochondrial dynamics, identifying a key new therapeutic target to prevent vascular growth during development and tumor formation.
Asunto(s)
GTP Fosfohidrolasas , Dinámicas Mitocondriales , GTP Fosfohidrolasas/genética , Mitocondrias , Proteínas MitocondrialesRESUMEN
Mitochondria are dynamic organelles with essential roles in signaling and metabolism. We recently identified a cellular structure called the mitochondrial-derived compartment (MDC) that is generated from mitochondria in response to amino acid overabundance stress. How cells form MDCs is unclear. Here, we show that MDCs are dynamic structures that form and stably persist at sites of contact between the ER and mitochondria. MDC biogenesis requires the ER-mitochondria encounter structure (ERMES) and the conserved GTPase Gem1, factors previously implicated in lipid exchange and membrane tethering at ER-mitochondria contacts. Interestingly, common genetic suppressors of abnormalities displayed by ERMES mutants exhibit distinct abilities to rescue MDC formation in ERMES-depleted strains and are incapable of rescuing MDC formation in cells lacking Gem1. Thus, the function of ERMES and Gem1 in MDC biogenesis may extend beyond their conventional role in maintaining mitochondrial phospholipid homeostasis. Overall, this study identifies an important function for ER-mitochondria contacts in the biogenesis of MDCs.
Asunto(s)
Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Biogénesis de Organelos , Saccharomyces cerevisiae/metabolismo , Retículo Endoplásmico/genética , Mitocondrias/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
It has long been postulated, although never directly demonstrated, that mitochondria are strategically positioned in the cytoplasm to meet local requirements for energy production. Here we show that positioning of mitochondria in mouse embryonic fibroblasts (MEFs) determines the shape of intracellular energy gradients in living cells. Specifically, the ratio of ATP to ADP was highest at perinuclear areas of dense mitochondria and gradually decreased as more-peripheral sites were approached. Furthermore, the majority of mitochondria were positioned at the ventral surface of the cell, correlating with high ATP:ADP ratios close to the ventral membrane, which rapidly decreased toward the dorsal surface. We used cells deficient for the mitochondrial Rho-GTPase 1 (Miro1), an essential mediator of microtubule-based mitochondrial motility, to study how changes in mitochondrial positioning affect cytoplasmic energy distribution and cell migration, an energy-expensive process. The mitochondrial network in Miro1-/- MEFs was restricted to the perinuclear area, with few mitochondria present at the cell periphery. This change in mitochondrial distribution dramatically reduced the ratio of ATP to ADP at the cell cortex and disrupted events essential for cell movement, including actin dynamics, lamellipodia protrusion, and membrane ruffling. Cell adhesion status was also affected by changes in mitochondrial positioning; focal adhesion assembly and stability was decreased in Miro1-/- MEFs compared with Miro1+/+ MEFs. Consequently Miro1-/- MEFs migrated slower than control cells during both collective and single-cell migration. These data establish that Miro1-mediated mitochondrial positioning at the leading edge provides localized energy production that promotes cell migration by supporting membrane protrusion and focal adhesion stability.