Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 617(7959): 132-138, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37076627

RESUMEN

Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Glucosinolatos , Proteínas de Transporte de Membrana , Semillas , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Floema/metabolismo , Reproducibilidad de los Resultados , Semillas/metabolismo
2.
Int J Cancer ; 154(6): 1057-1072, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38078628

RESUMEN

About 25% of melanoma harbor activating NRAS mutations, which are associated with aggressive disease therefore requiring a rapid antitumor intervention. However, no efficient targeted therapy options are currently available for patients with NRAS-mutant melanoma. MEK inhibitors (MEKi) appear to display a moderate antitumor activity and also immunological effects in NRAS-mutant melanoma, providing an ideal backbone for combination treatments. In our study, the MEKi binimetinib, cobimetinib and trametinib combined with the BRAF inhibitors (BRAFi) encorafenib, vemurafenib and dabrafenib were investigated for their ability to inhibit proliferation, induce apoptosis and alter the expression of immune modulatory molecules in sensitive NRAS-mutant melanoma cells using two- and three-dimensional cell culture models as well as RNA sequencing analyses. Furthermore, NRAS-mutant melanoma cells resistant to the three BRAFi/MEKi combinations were established to characterize the mechanisms contributing to their resistance. All BRAFi induced a stress response in the sensitive NRAS-mutant melanoma cells thereby significantly enhancing the antiproliferative and proapoptotic activity of the MEKi analyzed. Furthermore, BRAFi/MEKi combinations upregulated immune relevant molecules, such as ICOS-L, components of antigen-presenting machinery and the "don't eat me signal" molecule CD47 in the melanoma cells. The BRAFi/MEKi-resistant, NRAS-mutant melanoma cells counteracted the molecular and immunological effects of BRAFi/MEKi by upregulating downstream mitogen-activated protein kinase pathway molecules, inhibiting apoptosis and promoting immune escape mechanisms. Together, our study reveals potent molecular and immunological effects of BRAFi/MEKi in sensitive NRAS-mutant melanoma cells that may be exploited in new combinational treatment strategies for patients with NRAS-mutant melanoma.


Asunto(s)
Melanoma , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Proteínas Proto-Oncogénicas B-raf , Vemurafenib , Inhibidores de Proteínas Quinasas/efectos adversos , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutación , Resistencia a Antineoplásicos/genética , Proteínas de la Membrana/genética , GTP Fosfohidrolasas/genética
3.
Plant Cell Environ ; 47(2): 460-481, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37876364

RESUMEN

Hydathodes are usually associated with water exudation in plants. However, foliar water uptake (FWU) through the hydathodes has long been suspected in the leaf-succulent genus Crassula (Crassulaceae), a highly diverse group in southern Africa, and, to our knowledge, no empirical observations exist in the literature that unequivocally link FWU to hydathodes in this genus. FWU is expected to be particularly beneficial on the arid western side of southern Africa, where up to 50% of Crassula species occur and where periodically high air humidity leads to fog and/or dew formation. To investigate if hydathode-mediated FWU is operational in different Crassula species, we used the apoplastic fluorescent tracer Lucifer Yellow in combination with different imaging techniques. Our images of dye-treated leaves confirm that hydathode-mediated FWU does indeed occur in Crassula and that it might be widespread across the genus. Hydathodes in Crassula serve as moisture-harvesting structures, besides their more common purpose of guttation, an adaptation that has likely played an important role in the evolutionary history of the genus. Our observations suggest that ability for FWU is independent of geographical distribution and not restricted to arid environments under fog influence, as FWU is also operational in Crassula species from the rather humid eastern side of southern Africa. Our observations point towards no apparent link between FWU ability and overall leaf surface wettability in Crassula. Instead, the hierarchically sculptured leaf surfaces of several Crassula species may facilitate FWU due to hydrophilic leaf surface microdomains, even in seemingly hydrophobic species. Overall, these results confirm the ecophysiological relevance of hydathode-mediated FWU in Crassula and reassert the importance of atmospheric humidity for some arid-adapted plant groups.


Asunto(s)
Crassulaceae , Agua , Agua/fisiología , Hojas de la Planta/fisiología , Evolución Biológica , África Austral
4.
J Cardiovasc Magn Reson ; 26(1): 101032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38431079

RESUMEN

BACKGROUND: Identification of increased pulmonary capillary wedge pressure (PCWP) by right heart catheterization (RHC) is the reference standard for the diagnosis of heart failure with preserved ejection fraction (HFpEF). Recently, cardiovascular magnetic resonance (CMR) imaging estimation of PCWP at rest was introduced as a non-invasive alternative. Since many patients are only identified during physiological exercise-stress, we hypothesized that novel exercise-stress CMR-derived PCWP emerges superior compared to its assessment at rest. METHODS: The HFpEF-Stress Trial prospectively recruited 75 patients with exertional dyspnea and diastolic dysfunction who then underwent rest and exercise-stress RHC and CMR. HFpEF was defined according to PCWP (overt HFpEF ≥15 mmHg at rest, masked HFpEF ≥25 mmHg during exercise-stress). CMR-derived PCWP was calculated based on previously published formula using left ventricular mass and either biplane left atrial volume (LAV) or monoplane left atrial area (LAA). RESULTS: LAV (rest/stress: r = 0.50/r = 0.55, p < 0.001) and LAA PCWP (rest/stress: r = 0.50/r = 0.48, p < 0.001) correlated significantly with RHC-derived PCWP while numerically overestimating PCWP at rest and underestimating PCWP during exercise-stress. LAV and LAA PCWP showed good diagnostic accuracy to detect HFpEF (area under the receiver operating characteristic curve (AUC) LAV rest 0.73, stress 0.81; LAA rest 0.72, stress 0.77) with incremental diagnostic value for the detection of masked HFpEF using exercise-stress (AUC LAV rest 0.54 vs stress 0.67, p = 0.019, LAA rest 0.52 vs stress 0.66, p = 0.012). LAV but not LAA PCWP during exercise-stress was a predictor for 24 months hospitalization independent of a medical history for atrial fibrillation (hazard ratio (HR) 1.26, 95% confidence interval 1.02-1.55, p = 0.032). CONCLUSION: Non-invasive PCWP correlates well with the invasive reference at rest and during exercise stress. There is overall good diagnostic accuracy for HFpEF assessment using CMR-derived estimated PCWP despite deviations in absolute agreement. Non-invasive exercise derived PCWP may particularly facilitate detection of masked HFpEF in the future.


Asunto(s)
Cateterismo Cardíaco , Prueba de Esfuerzo , Insuficiencia Cardíaca , Valor Predictivo de las Pruebas , Presión Esfenoidal Pulmonar , Volumen Sistólico , Función Ventricular Izquierda , Humanos , Masculino , Femenino , Estudios Prospectivos , Anciano , Persona de Mediana Edad , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/diagnóstico por imagen , Imagen por Resonancia Cinemagnética , Descanso , Curva ROC , Reproducibilidad de los Resultados , Área Bajo la Curva , Disnea/fisiopatología , Disnea/etiología , Disnea/diagnóstico , Imagen por Resonancia Magnética
5.
Physiol Plant ; 176(3): e14338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38740528

RESUMEN

Bacteria can be applied as biofertilizers to improve crop growth in phosphorus (P)-limited conditions. However, their mode of action in a soil environment is still elusive. We used the strain ALC_02 as a case study to elucidate how Bacillus subtilis affects dwarf tomato cultivated in soil-filled rhizoboxes over time. ALC_02 improved plant P acquisition by increasing the size and P content of P-limited plants. We assessed three possible mechanisms, namely root growth stimulation, root hair elongation, and solubilization of soil P. ALC_02 produced auxin, and inoculation with ALC_02 promoted root growth. ALC_02 promoted root hair elongation as the earliest observed response and colonized root hairs specifically. Root and root hair growth stimulation was associated with a subsequent increase in plant P content, indicating that a better soil exploration by the root system improved plant P acquisition. Furthermore, ALC_02 affected the plant-available P content in sterilized soil differently over time and released P from native P pools in the soil. Collectively, ALC_02 exhibited all three mechanisms in a soil environment. To our knowledge, bacterial P biofertilizers have not been reported to colonize and elongate root hairs in the soil so far, and we propose that these traits contribute to the overall effect of ALC_02. The knowledge gained in this research can be applied in the future quest for bacterial P biofertilizers, where we recommend assessing all three parameters, not only root growth and P solubilization, but also root hair elongation. This will ultimately support the development of sustainable agricultural practices.


Asunto(s)
Bacillus subtilis , Fósforo , Raíces de Plantas , Suelo , Solanum lycopersicum , Fósforo/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , Suelo/química , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Solanum lycopersicum/metabolismo , Microbiología del Suelo , Solubilidad , Ácidos Indolacéticos/metabolismo , Fertilizantes
6.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34795057

RESUMEN

Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense.


Asunto(s)
Conducta Alimentaria/fisiología , Herbivoria/fisiología , Defensa de la Planta contra la Herbivoria/fisiología , Plantas/metabolismo , Animales , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Larva/metabolismo , Hojas de la Planta/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 324(5): H686-H695, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897745

RESUMEN

Left atrial and ventricular (LA/LV) dysfunction are interlinked in heart failure with preserved ejection fraction (HFpEF); however, little is known about their interplay and relation to cardiac decompensation. We hypothesized that cardiovascular magnetic resonance (CMR) left atrioventricular coupling index (LACI) would identify pathophysiological alterations in HFpEF and be amenable to rest and ergometer-stress CMR. Patients with exertional dyspnoea, signs of diastolic dysfunction (E/e' ≥ 8), and preserved ejection fraction (EF; ≥50%) on echocardiography were prospectively recruited and classified as HFpEF (n = 34) or noncardiac dyspnoea (NCD, n = 34) according to pulmonary capillary wedge pressure (PCWP) on right-heart catheterization (rest/stress ≥ 15/25 mmHg). LA and LV volumes were assessed on short-axis real-time cine sequences at rest and during exercise stress. LACI was defined as the ratio of the LA-to-LV end-diastolic volume. Cardiovascular hospitalization (CVH) was assessed after 24 mo. Volume-derived LA (P ≥ 0.008) but not LV (P ≥ 0.347) morphology and function at rest and during exercise stress detected significant differences comparing HFpEF and NCD. There was impaired atrioventricular coupling in HFpEF at rest (LACI, 45.7% vs. 31.6%, P < 0.001) and during exercise stress (45.7% vs. 27.9%, P < 0.001). LACI correlated with PCWP at rest (r = 0.48, P < 0.001) and during exercise stress (r = 0.55, P < 0.001). At rest, LACI was the only volumetry-derived parameter to differentiate patients with NCD from patients with HFpEF, which were identified using exercise-stress thresholds (P = 0.001). Resting and exercise-stress LACI dichotomized at their medians were associated with CVH (P ≤ 0.005). Assessment of LACI is a simple approach for LA/LV coupling quantification and allows easy and fast identification of heart failure with preserved ejection fraction (HFpEF).NEW & NOTEWORTHY Evaluation of the left atrioventricular coupling index (LACI) in a rest and exercise-stress cardiovascular magnetic resonance imaging protocol allows identification of patients with heart failure and preserved ejection fraction with high diagnostic accuracy. LACI holds similar diagnostic accuracy at rest compared with left atrial ejection fraction during exercise stress. This highlights the value of LACI as a widely available and cost-effective test for diastolic dysfunction, which may help to guide patient selection for referral to specialized testing/treatment.


Asunto(s)
Fibrilación Atrial , Insuficiencia Cardíaca , Enfermedades no Transmisibles , Disfunción Ventricular Izquierda , Humanos , Insuficiencia Cardíaca/diagnóstico por imagen , Función Ventricular Izquierda/fisiología , Volumen Sistólico/fisiología , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Disnea
8.
J Exp Bot ; 74(21): 6677-6691, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37668473

RESUMEN

The vasculature along conifer needles is fundamentally different from that in angiosperm leaves as it contains a unique transfusion tissue inside the bundle sheath. In this study, we used specific tracers to identify the pathway of photoassimilates from mesophyll to phloem, and the opposing pathway of nutrients from xylem to mesophyll. For symplasmic transport we applied esculin to the tip of attached pine needles and followed its movement down the phloem. For apoplasmic transport we let detached needles take up a membrane-impermeable contrast agent and used micro-X-ray computed tomography to map critical water exchange interfaces and domain borders. Microscopy and segmentation of the X-ray data enabled us to render and quantify the functional 3D structure of the water-filled apoplasm and the complementary symplasmic domain. The transfusion tracheid system formed a sponge-like apoplasmic domain that was blocked at the bundle sheath. Transfusion parenchyma cell chains bridged this domain as tortuous symplasmic pathways with strong local anisotropy which, as evidenced by the accumulation of esculin, pointed to the phloem flanks as the preferred phloem-loading path. Simple estimates supported a pivotal role of the bundle sheath, showing that a bidirectional movement of nutrient ions and assimilates is feasible and emphasizing the role of the bundle sheath in nutrient and assimilate exchange.


Asunto(s)
Tracheophyta , Tracheophyta/metabolismo , Esculina/metabolismo , Transporte Biológico , Hojas de la Planta/metabolismo , Nutrientes , Agua/metabolismo , Floema/metabolismo
9.
J Cardiovasc Magn Reson ; 25(1): 24, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37046343

RESUMEN

BACKGROUND: Recently, a novel left atrioventricular coupling index (LACI) has been introduced providing prognostic value to predict cardiovascular events beyond common risk factors in patients without cardiovascular disease. Since data on cardiovascular magnetic resonance (CMR)-derived LACI in patients following acute myocardial infarction (AMI) are scarce, we aimed to assess the diagnostic and prognostic implications of LACI in a large AMI patient cohort. METHODS: In total, 1046 patients following AMI were included. After primary percutaneous coronary intervention CMR imaging and subsequent functional analyses were performed. LACI was defined by the ratio of the left atrial end-diastolic volume divided by the left ventricular (LV) end-diastolic volume. Major adverse cardiac events (MACE) including death, reinfarction or heart failure within 12 months after the index event were defined as primary clinical endpoint. RESULTS: LACI was significantly higher in patients with MACE compared to those without MACE (p < 0.001). Youden Index identified an optimal LACI cut-off at 34.7% to classify patients at high-risk (p < 0.001 on log-rank testing). Greater LACI was associated with MACE on univariate regression modeling (HR 8.1, 95% CI 3.4-14.9, p < 0.001) and after adjusting for baseline confounders and LV ejection fraction (LVEF) on multivariate regression analyses (HR 3.1 95% CI 1.0-9, p = 0.049). Furthermore, LACI assessment enabled further risk stratification in high-risk patients with impaired LV systolic function (LVEF ≤ 35%; p < 0.001 on log-rank testing). CONCLUSION: Atrial-ventricular interaction using CMR-derived LACI is a superior measure of outcome beyond LVEF especially in high-risk patients following AMI. Trial registration ClinicalTrials.gov, NCT00712101 and NCT01612312.


Asunto(s)
Fibrilación Atrial , Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Fibrilación Atrial/etiología , Atrios Cardíacos , Imagen por Resonancia Cinemagnética , Espectroscopía de Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/terapia , Intervención Coronaria Percutánea/efectos adversos , Valor Predictivo de las Pruebas , Pronóstico , Volumen Sistólico , Función Ventricular Izquierda
10.
Angew Chem Int Ed Engl ; 62(52): e202314667, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37962230

RESUMEN

J-aggregates are highly desired dye aggregates but so far there has been no general concept how to accomplish the required slip-stacked packing arrangement for dipolar merocyanine (MC) dyes whose aggregation commonly affords one-dimensional aggregates composed of antiparallel, co-facially stacked MCs with H-type coupling. Herein we describe a strategy for MC J-aggregates based on our results for an amphiphilic MC dye bearing alkyl and oligo(ethylene glycol) side chains. In an aqueous solvent mixture, we observe the formation of two supramolecular polymorphs for this MC dye, a metastable off-pathway nanoparticle showing H-type coupling and a thermodynamically favored nanosheet showing J-type coupling. Detailed studies concerning the self-assembly mechanism by UV-Vis spectroscopy and the packing structure by atomic force microscopy and wide-angle X-ray scattering show how the packing arrangement of such amphiphilic MC dyes can afford slip-stacked two-dimensional nanosheets whose macrodipole is compensated by the formation of a bilayer structure. As an additional feature we demonstrate how the size of the nanosheets can be controlled by seeded living supramolecular polymerization.

11.
J Interv Cardiol ; 2022: 1368878, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35539443

RESUMEN

Background: Cardiovascular magnetic resonance imaging is considered the reference standard for assessing cardiac morphology and function and has demonstrated prognostic utility in patients undergoing transcatheter aortic valve replacement (TAVR). Novel fully automated analyses may facilitate data analyses but have not yet been compared against conventional manual data acquisition in patients with severe aortic stenosis (AS). Methods: Fully automated and manual biventricular assessments were performed in 139 AS patients scheduled for TAVR using commercially available software (suiteHEART®, Neosoft; QMass®, Medis Medical Imaging Systems). Volumetric assessment included left ventricular (LV) mass, LV/right ventricular (RV) end-diastolic/end-systolic volume, LV/RV stroke volume, and LV/RV ejection fraction (EF). Results of fully automated and manual analyses were compared. Regression analyses and receiver operator characteristics including area under the curve (AUC) calculation for prediction of the primary study endpoint cardiovascular (CV) death were performed. Results: Fully automated and manual assessment of LVEF revealed similar prediction of CV mortality in univariable (manual: hazard ratio (HR) 0.970 (95% CI 0.943-0.997) p=0.032; automated: HR 0.967 (95% CI 0.939-0.995) p=0.022) and multivariable analyses (model 1: (including significant univariable parameters) manual: HR 0.968 (95% CI 0.938-0.999) p=0.043; automated: HR 0.963 [95% CI 0.933-0.995] p=0.024; model 2: (including CV risk factors) manual: HR 0.962 (95% CI 0.920-0.996) p=0.027; automated: HR 0.954 (95% CI 0.920-0.989) p=0.011). There were no differences in AUC (LVEF fully automated: 0.686; manual: 0.661; p=0.21). Absolute values of LV volumes differed significantly between automated and manual approaches (p < 0.001 for all). Fully automated quantification resulted in a time saving of 10 minutes per patient. Conclusion: Fully automated biventricular volumetric assessments enable efficient and equal risk prediction compared to conventional manual approaches. In addition to significant time saving, this may provide the tools for optimized clinical management and stratification of patients with severe AS undergoing TAVR.


Asunto(s)
Estenosis de la Válvula Aórtica , Reemplazo de la Válvula Aórtica Transcatéter , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Inteligencia Artificial , Humanos , Medición de Riesgo , Volumen Sistólico , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Función Ventricular Izquierda
12.
Physiol Plant ; 174(1): e13634, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35060148

RESUMEN

The phloem enables vascular plants to transport photoassimilates from source tissues to heterotrophic sink tissues. In the phloem, unbroken strings of enucleated sieve elements, which lose the majority of their cellular contents upon maturation, provide a low resistance path for mass flow. The protein machinery in mature sieve elements performs vital functions to maintain the flow, transmit systemic signals and defend the sugar stream against pests. However, our knowledge of this particular protein population is very limited since mature sieve elements are difficult to isolate and not amenable to transcriptomic analysis due to their enucleate nature. Here, we used co-expression analysis and published gene clusters from transcriptomic studies to generate a list of sieve element proteins that potentially survive the enucleation process to reside in mature sieve elements. We selected seven candidates and show that they all localize in sieve elements in Arabidopsis roots and six of them in bolting stems. Our results support the idea that nascent sieve elements prior to enucleation translate part of the protein machinery found in mature sieve elements. Our co-expression list and the publicly available gene clusters expressed in late proto- and meta-phloem sieve elements are valuable resources for uncharacterized genes that may function in mature sieve elements.


Asunto(s)
Arabidopsis , Floema , Arabidopsis/genética , Floema/genética , Floema/metabolismo , Raíces de Plantas/metabolismo
13.
Nucleic Acids Res ; 48(13): 7079-7098, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32525984

RESUMEN

We give results from a detailed analysis of human Ribosomal Protein (RP) levels in normal and cancer samples and cell lines from large mRNA, copy number variation and ribosome profiling datasets. After normalizing total RP mRNA levels per sample, we find highly consistent tissue specific RP mRNA signatures in normal and tumor samples. Multiple RP mRNA-subtypes exist in several cancers, with significant survival and genomic differences. Some RP mRNA variations among subtypes correlate with copy number loss of RP genes. In kidney cancer, RP subtypes map to molecular subtypes related to cell-of-origin. Pan-cancer analysis of TCGA data showed widespread single/double copy loss of RP genes, without significantly affecting survival. In several cancer cell lines, CRISPR-Cas9 knockout of RP genes did not affect cell viability. Matched RP ribosome profiling and mRNA data in humans and rodents stratified by tissue and development stage and were strongly correlated, showing that RP translation rates were proportional to mRNA levels. In a small dataset of human adult and fetal tissues, RP protein levels showed development stage and tissue specific heterogeneity of RP levels. Our results suggest that heterogeneous RP levels play a significant functional role in cellular physiology, in both normal and disease states.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias/metabolismo , ARN Mensajero , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Línea Celular , Bases de Datos Genéticas , Feto , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/genética
14.
Angew Chem Int Ed Engl ; 61(2): e202114667, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-34784435

RESUMEN

Many dyes suffer from fast non-radiative decay pathways, thereby showing only short-lived excited states and weak photoluminescence. Here we show a pronounced fluorescence enhancement for a weakly fluorescent merocyanine (MC) dye by being co-facially stacked to other dyes in hetero-folda-trimer architectures. By means of fluorescence spectroscopy (lifetime, quantum yield) the fluorescence enhancement was explained by the rigidification of the emitting chromophore in the defined foldamer architecture and the presence of a non-forbidden lowest exciton state in H-coupled hetero-aggregates. This folding-induced fluorescence enhancement (FIFE) for specific sequences of π-stacked dyes points at a viable strategy toward improved fluorophores that relates to the approach used by nature in the green fluorescent protein (GFP).

15.
Angew Chem Int Ed Engl ; 61(21): e202200120, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35194914

RESUMEN

The pseudopeptide backbone provided by N-(2-aminoethyl)-glycine oligomers with attached nucleobases has been widely utilized in peptide nucleic acids (PNAs) as DNA mimics. Here we demonstrate the suitability of this backbone for the formation of structurally defined dye stacks. Toward this goal a series of peptide merocyanine (PMC) dye oligomers connected to a N-(2-aminoethyl)-glycine backbone were prepared through peptide synthesis. Our concentration-, temperature- and solvent-dependent UV/Vis absorption studies show that under the control of dipole-dipole interactions, smaller-sized oligomers consisting of one, two or three dyes self-assemble into defined duplex structures containing two up to six chromophores. In contrast, upon further extension of the oligomer, the chosen peptide backbone cannot direct the formation of a defined duplex architecture anymore due to intramolecular aggregation between the dyes. For all aggregate species a moderate aggregation-induced emission enhancement is observed.


Asunto(s)
Ácidos Nucleicos de Péptidos , Benzopiranos , Colorantes , Glicina/química , Indoles , Ácidos Nucleicos de Péptidos/química , Péptidos
16.
New Phytol ; 230(5): 1911-1924, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33638181

RESUMEN

The green leaves of plants are optimised for carbon fixation and the production of sugars, which are used as central units of carbon and energy throughout the plant. However, there are physical limits to this optimisation that remain insufficiently understood. Here, quantitative anatomical analysis combined with mathematical modelling and sugar transport rate measurements were used to determine how effectively sugars are exported from the needle-shaped leaves of conifers in relation to leaf length. Mathematical modelling indicated that phloem anatomy constrains sugar export in long needles. However, we identified two mechanisms by which this constraint is overcome, even in needles longer than 20 cm: (1) the grouping of transport conduits, and (2) a shift in the diurnal rhythm of sugar metabolism and export in needle tips. The efficiency of sugar transport in the phloem can have a significant influence on leaf function. The constraints on sugar export described here for conifer needles are likely to also be relevant in other groups of plants, such as grasses and angiosperm trees.


Asunto(s)
Tracheophyta , Transporte Biológico , Agujas , Floema , Hojas de la Planta , Azúcares
17.
Sensors (Basel) ; 21(6)2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33803030

RESUMEN

Reliable object tracking that is based on video data constitutes an important challenge in diverse areas, including, among others, assisted surgery. Particle filtering offers a state-of-the-art technology for this challenge. Becaise a particle filter is based on a probabilistic model, it provides explicit likelihood values; in theory, the question of whether an object is reliably tracked can be addressed based on these values, provided that the estimates are correct. In this contribution, we investigate the question of whether these likelihood values are suitable for deciding whether the tracked object has been lost. An immediate strategy uses a simple threshold value to reject settings with a likelihood that is too small. We show in an application from the medical domain-object tracking in assisted surgery in the domain of Robotic Osteotomies-that this simple threshold strategy does not provide a reliable reject option for object tracking, in particular if different settings are considered. However, it is possible to develop reliable and flexible machine learning models that predict a reject based on diverse quantities that are computed by the particle filter. Modeling the task in the form of a regression enables a flexible handling of different demands on the tracking accuracy; modeling the challenge as an ensemble of classification tasks yet surpasses the results, while offering the same flexibility.


Asunto(s)
Algoritmos
18.
Internist (Berl) ; 62(7): 729-740, 2021 Jul.
Artículo en Alemán | MEDLINE | ID: mdl-34106293

RESUMEN

Myocardial ischemia is triggered by a mismatch between the oxygen supply and demand of the myocardial tissue. The most common cause is coronary artery disease; however, not every coronary stenosis is hemodynamically relevant and leads to myocardial ischemia. The guidelines recommend noninvasive ischemia diagnostics prior to invasive treatment in patients with chronic coronary syndrome. Cardiac computed tomography, stress echocardiography, nuclear cardiological procedures (positron emission tomography and single photon emission computed tomography) and cardiac magnetic resonance imaging are the main diagnostic tools for this purpose and are incorporated into the clinical routine. This article provides a review of the indications, the relative advantages and disadvantages of the respective methods and their utilization in routine clinical practice.


Asunto(s)
Enfermedad de la Arteria Coronaria , Tomografía Computarizada de Emisión de Fotón Único , Angiografía Coronaria , Corazón , Humanos , Isquemia
19.
Lancet ; 393(10181): 1619-1627, 2019 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-30910324

RESUMEN

BACKGROUND: Two-dimensional (2D) ultrasound echocardiography is the primary technique used to diagnose congenital heart disease before birth. There is, however, a longstanding need for a reliable form of secondary imaging, particularly in cases when more detailed three-dimensional (3D) vascular imaging is required, or when ultrasound windows are of poor diagnostic quality. Fetal MRI, which is well established for other organ systems, is highly susceptible to fetal movement, particularly for 3D imaging. The objective of this study was to investigate the combination of prenatal MRI with novel, motion-corrected 3D image registration software, as an adjunct to fetal echocardiography in the diagnosis of congenital heart disease. METHODS: Pregnant women carrying a fetus with known or suspected congenital heart disease were recruited via a tertiary fetal cardiology unit. After initial validation experiments to assess the general reliability of the approach, MRI data were acquired in 85 consecutive fetuses, as overlapping stacks of 2D images. These images were then processed with a bespoke open-source reconstruction algorithm to produce a super-resolution 3D volume of the fetal thorax. These datasets were assessed with measurement comparison with paired 2D ultrasound, structured anatomical assessment of the 2D and 3D data, and contemporaneous, archived clinical fetal MRI reports, which were compared with postnatal findings after delivery. FINDINGS: Between Oct 8, 2015, and June 30, 2017, 101 patients were referred for MRI, of whom 85 were eligible and had fetal MRI. The mean gestational age at the time of MRI was 32 weeks (range 24-36). High-resolution (0·50-0·75 mm isotropic) 3D datasets of the fetal thorax were generated in all 85 cases. Vascular measurements showed good overall agreement with 2D echocardiography in 51 cases with paired data (intra-class correlation coefficient 0·78, 95% CI 0·68-0·84), with fetal vascular structures more effectively visualised with 3D MRI than with uncorrected 2D MRI (657 [97%] of 680 anatomical areas identified vs 358 [53%] of 680 areas; p<0·0001). When a structure of interest was visualised in both 2D and 3D data (n=358), observers gave a higher diagnostic quality score for 3D data in 321 (90%) of cases, with 37 (10%) scores tied with 2D data, and no lower scores than for 2D data (Wilcoxon signed rank test p<0·0001). Additional anatomical features were described in ten cases, of which all were confirmed postnatally. INTERPRETATION: Standard fetal MRI with open-source image processing software is a reliable method of generating high-resolution 3D imaging of the fetal vasculature. The 3D volumes produced show good spatial agreement with ultrasound, and significantly improved visualisation and diagnostic quality compared with source 2D MRI data. This freely available combination requires minimal infrastructure, and provides safe, powerful, and highly complementary imaging of the fetal cardiovascular system. FUNDING: Wellcome Trust/EPSRC Centre for Medical Engineering, National Institute for Health Research.


Asunto(s)
Cardiotocografía/métodos , Corazón Fetal/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética , Femenino , Corazón Fetal/patología , Edad Gestacional , Cardiopatías Congénitas/diagnóstico , Humanos , Embarazo , Estudios Prospectivos , Ultrasonografía Prenatal
20.
Plant Physiol ; 179(4): 1768-1778, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30723179

RESUMEN

The export of photosynthetically produced sugars from leaves depends on plasmodesmatal transport of sugar molecules from mesophyll to phloem. Traditionally, the density of plasmodesmata (PD) along this phloem-loading pathway has been used as a defining feature of different phloem-loading types, with species proposed to have either many or few PD between the phloem and surrounding cells of the leaf. However, quantitative determination of PD density has rarely been performed. Moreover, the structure of PD has not been considered, even though it could impact permeability, and functional data are only available for very few species. Here, a comparison of PD density, structure, and function using data from transmission electron microscopy and live-cell microscopy was conducted for all relevant cell-cell interfaces in leaves of nine species. These species represent the three principal phloem-loading types currently discussed in literature. Results show that relative PD density among the different cell-cell interfaces in one species, but not absolute PD density, is indicative of phloem-loading type. PD density data of single interfaces, even combined with PD diameter and length data, did not correlate with the intercellular diffusion capacity measured by the fluorescence loss in photobleaching method. This means that PD substructure not visible on standard transmission electron micrographs may have a strong influence on permeability. Furthermore, the results support a proposed passive symplasmic loading mechanism in the tree species horse chestnut (Aesculus hippocastanum), white birch (Betula pubescens), orchard apple (Malus domestica), and gray poplar (Populus x canescens) as functional cell coupling and PD structure differed from active symplasmic and apoplasmic phloem-loading species.


Asunto(s)
Aesculus/metabolismo , Betula/metabolismo , Malus/metabolismo , Plasmodesmos/fisiología , Azúcares/metabolismo , Aesculus/ultraestructura , Betula/ultraestructura , Transporte Biológico , Malus/ultraestructura , Microscopía Electrónica de Transmisión , Floema/metabolismo , Plasmodesmos/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA