Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 99(4): 900-913, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33316280

RESUMEN

Aminopeptidase A is one of the most potent enzymes within the renin-angiotensin system in terms of angiotensin II degradation. Here, we examined whether there is a kidney phenotype and any compensatory changes in other renin angiotensin system enzymes involved in the metabolism of angiotensin II associated with aminopeptidase A deficiency. Kidneys harvested from aminopeptidase A knockout mice were examined by light and electron microscopy, immunohistochemistry and immunofluorescence. Kidney angiotensin II levels and the ability of renin angiotensin system enzymes in the glomerulus to degrade angiotensin II ex vivo, their activities, protein and mRNA levels in kidney lysates were evaluated. Knockout mice had increased blood pressure and mild glomerular mesangial expansion without significant albuminuria. By electron microscopy, knockout mice exhibited a mild increase of the mesangial matrix, moderate thickening of the glomerular basement membrane but a striking appearance of knob-like structures. These knobs were seen in both male and female mice and persisted after the treatment of hypertension. In isolated glomeruli from knockout mice, the level of angiotensin II was more than three-fold higher as compared to wild type control mice. In kidney lysates from knockout mice angiotensin converting enzyme activity, protein and mRNA levels were markedly decreased possibly as a compensatory mechanism to reduce angiotensin II formation. Thus, our findings support a role for aminopeptidase A in the maintenance of glomerular structure and intra-kidney homeostasis of angiotensin peptides.


Asunto(s)
Membrana Basal Glomerular , Glutamil Aminopeptidasa , Riñón , Angiotensina II/metabolismo , Animales , Femenino , Membrana Basal Glomerular/metabolismo , Glutamil Aminopeptidasa/genética , Glutamil Aminopeptidasa/metabolismo , Riñón/metabolismo , Masculino , Ratones , Ratones Noqueados , Sistema Renina-Angiotensina/genética
2.
Hypertension ; 75(1): 173-182, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31786979

RESUMEN

The Ang II (Angiotensin II)-Angiotensin-(1-7) axis of the Renin Angiotensin System encompasses 3 enzymes that form Angiotensin-(1-7) [Ang-(1-7)] directly from Ang II: ACE2 (angiotensin-converting enzyme 2), PRCP (prolylcarboxypeptidase), and POP (prolyloligopeptidase). We investigated their relative contribution to Ang-(1-7) formation in vivo and also ex vivo in serum, lungs, and kidneys using models of genetic ablation coupled with pharmacological inhibitors. In wild-type (WT) mice, infusion of Ang II resulted in a rapid increase of plasma Ang-(1-7). In ACE2-/-/PRCP-/- mice, Ang II infusion resulted in a similar increase in Ang-(1-7) as in WT (563±48 versus 537±70 fmol/mL, respectively), showing that the bulk of Ang-(1-7) formation in circulation is essentially independent of ACE2 and PRCP. By contrast, a POP inhibitor, Z-Pro-Prolinal reduced the rise in plasma Ang-(1-7) after infusing Ang II to control WT mice. In POP-/- mice, the increase in Ang-(1-7) was also blunted as compared with WT mice (309±46 and 472±28 fmol/mL, respectively P=0.01), and moreover, the rate of recovery from acute Ang II-induced hypertension was delayed (P=0.016). In ex vivo studies, POP inhibition with ZZP reduced Ang-(1-7) formation from Ang II markedly in serum and in lung lysates. By contrast, in kidney lysates, the absence of ACE2, but not POP, obliterated Ang-(1-7) formation from added Ang II. We conclude that POP is the main enzyme responsible for Ang II conversion to Ang-(1-7) in the circulation and in the lungs, whereas Ang-(1-7) formation in the kidney is mainly ACE2-dependent.


Asunto(s)
Angiotensina II/farmacología , Angiotensina I/sangre , Presión Sanguínea/efectos de los fármacos , Fragmentos de Péptidos/sangre , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina/efectos de los fármacos , Serina Endopeptidasas/metabolismo , Enzima Convertidora de Angiotensina 2 , Animales , Presión Sanguínea/fisiología , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Masculino , Ratones , Ratones Noqueados , Peptidil-Dipeptidasa A/genética , Prolil Oligopeptidasas , Sistema Renina-Angiotensina/fisiología , Serina Endopeptidasas/genética
3.
Biomolecules ; 9(12)2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31861139

RESUMEN

ACE2 is a monocarboxypeptidase which generates Angiotensin (1-7) from Angiotensin II (1-8). Attempts to target the kidney Renin Angiotensin System using native ACE2 to treat kidney disease are hampered by its large molecular size, 100 kDa, which precludes its glomerular filtration and subsequent tubular uptake. Here, we show that both urine and kidney lysates are capable of digesting native ACE2 into shorter proteins of ~60-75 kDa and then demonstrate that they are enzymatically very active. We then truncated the native ACE2 by design from the C-terminus to generate two short recombinant (r)ACE2 variants (1-605 and 1-619AA). These two truncates have a molecular size of ~70 kDa, as expected from the amino acid sequence and as shown by Western blot. ACE2 enzyme activity, measured using a specific substrate, was higher than that of the native rACE2 (1-740 AA). When infused to mice with genetic ACE2 deficiency, a single i.v. injection of 1-619 resulted in detectable ACE2 activity in urine, whereas infusion of the native ACE2 did not. Moreover, ACE2 activity was recovered in harvested kidneys from ACE2-deficient mice infused with 1-619, but not in controls (23.1 ± 4.3 RFU/µg creatinine/h and 1.96 ± 0.73 RFU/µg protein/hr, respectively). In addition, the kidneys of ACE2-null mice infused with 1-619 studied ex vivo formed more Ang (1-7) from exogenous Ang II than those infused with vehicle (AUC 8555 ± 1933 vs. 3439 ± 753 ng/mL, respectively, p < 0.05) further demonstrating the functional effect of increasing kidney ACE2 activity after the infusion of our short ACE2 1-619 variant. We conclude that our novel short recombinant ACE2 variants undergo glomerular filtration, which is associated with kidney uptake of enzymatically active proteins that can enhance the formation of Ang (1-7) from Ang II. These small ACE2 variants may offer a potentially useful approach to target kidney RAS overactivity to combat kidney injury.


Asunto(s)
Corteza Renal/metabolismo , Peptidil-Dipeptidasa A/metabolismo , Sistema Renina-Angiotensina , Enzima Convertidora de Angiotensina 2 , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/deficiencia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA