Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(4): 632-642, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35301508

RESUMEN

Although inhibition of T cell coinhibitory receptors has revolutionized cancer therapy, the mechanisms governing their expression on human T cells have not been elucidated. In the present study, we show that type 1 interferon (IFN-I) regulates coinhibitory receptor expression on human T cells, inducing PD-1/TIM-3/LAG-3 while inhibiting TIGIT expression. High-temporal-resolution mRNA profiling of IFN-I responses established the dynamic regulatory networks uncovering three temporal transcriptional waves. Perturbation of key transcription factors (TFs) and TF footprint analysis revealed two regulator modules with different temporal kinetics that control expression of coinhibitory receptors and IFN-I response genes, with SP140 highlighted as one of the key regulators that differentiates LAG-3 and TIGIT expression. Finally, we found that the dynamic IFN-I response in vitro closely mirrored T cell features in acute SARS-CoV-2 infection. The identification of unique TFs controlling coinhibitory receptor expression under IFN-I response may provide targets for enhancement of immunotherapy in cancer, infectious diseases and autoimmunity.


Asunto(s)
COVID-19 , Interferón Tipo I , Redes Reguladoras de Genes , Humanos , Interferón Tipo I/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores Inmunológicos/genética , SARS-CoV-2 , Linfocitos T
2.
Physiol Rev ; 104(2): 533-587, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37561137

RESUMEN

Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.


Asunto(s)
Pulmón , Insuficiencia Multiorgánica , Humanos , Insuficiencia Multiorgánica/metabolismo , Pulmón/metabolismo , Endotelio Vascular/metabolismo , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo
3.
Am J Pathol ; 194(2): 180-194, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38029923

RESUMEN

A minimal diffusion barrier is key to the pulmonary gas exchange. In alveolar capillary dysplasia (ACD), a rare genetically driven disease of early infancy, this crucial fibrovascular interface is compromised while the underlying pathophysiology is insufficiently understood. Recent in-depth analyses of vascular alterations in adult lung disease encouraged researchers to extend these studies to ACD and compare the changes of the microvasculature. Lung tissue samples of children with ACD (n = 12), adults with non-specific interstitial pneumonia (n = 12), and controls (n = 20) were studied using transmission electron microscopy, single-gene sequencing, immunostaining, exome sequencing, and broad transcriptome profiling. In ACD, pulmonary capillary basement membranes were hypertrophied, thickened, and multilamellated. Transcriptome profiling revealed increased CDH5, COL4A1, COL15A1, PTK2B, and FN1 and decreased VIT expression, confirmed by immunohistochemistry. In contrast, non-specific interstitial pneumonia samples showed a regular basement membrane architecture with preserved VIT expression but also increased COL15A1+ vessels. This study provides insight into the ultrastructure and pathophysiology of ACD. The lack of normally developed lung capillaries appeared to cause a replacement by COL15A1+ vessels, a mechanism recently described in interstitial lung disease. The VIT loss and FN1 overexpression might contribute to the unique appearance of basement membranes in ACD. Future studies are needed to explore the therapeutic potential of down-regulating the expression of FN1 and balancing VIT deficiency.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Síndrome de Circulación Fetal Persistente , Recién Nacido , Niño , Adulto , Humanos , Membrana Basal , Alveolos Pulmonares , Pulmón , Capilares
4.
Artículo en Inglés | MEDLINE | ID: mdl-38717443

RESUMEN

RATIONALE: Changes in peripheral blood cell populations have been observed but not detailed at single-cell resolution in idiopathic pulmonary fibrosis (IPF). OBJECTIVES: To provide an atlas of the changes in the peripheral immune system in stable and progressive IPF. METHODS: Peripheral blood mononuclear cells (PBMCs) from IPF patients and controls were profiled using 10x Chromium 5' single-cell RNA sequencing (scRNA-seq). Flow cytometry was used for validation. Protein concentrations of Regulatory T-cells (Tregs) and Monocytes chemoattractants were measured in plasma and lung homogenates from patients and controls. MEASUREMENTS AND MAIN RESULTS: Thirty-eight PBMC samples from 25 patients with IPF and 13 matched controls yielded 149,564 cells that segregated into 23 subpopulations. Classical monocytes were increased in progressive and stable IPF compared to controls (32.1%, 25.2%, 17.9%, respectively, p<0.05). Total lymphocytes were decreased in IPF vs controls, and in progressive vs stable IPF (52.6% vs 62.6%, p=0.035). Tregs were increased in progressive vs stable IPF (1.8% vs 1.1% of all PBMC, p=0.007), although not different than controls, and may be associated with decreased survival (P=0.009 in Kaplan-Meier analysis; P=0.069 after adjusting for age, sex, and baseline FVC). Flow cytometry analysis confirmed this finding in an independent cohort of IPF patients. Fraction of Tregs out of all T cells was also increased in two cohorts of lung scRNA-seq. CCL22 and CCL18, ligands for CCR4 and CCR8 Treg chemotaxis receptors, were increased in IPF. CONCLUSIONS: The single-cell atlas of the peripheral immune system in IPF, reveals an outcome-predictive increase in classical monocytes and Tregs, as well as evidence for a lung-blood immune recruitment axis involving CCL7 (for classical monocytes) and CCL18/CCL22 (for Tregs).

5.
Artículo en Inglés | MEDLINE | ID: mdl-38924775

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis is a debilitating interstitial lung disease driven by incompletely understood immune mechanisms. Objectives: To elucidate immune aberrations in fibrotic hypersensitivity pneumonitis in single-cell resolution. Methods: Single-cell 5' RNA sequencing was conducted on peripheral blood mononuclear cells and bronchoalveolar lavage cells obtained from 45 patients with fibrotic hypersensitivity pneumonitis, 63 idiopathic pulmonary fibrosis, 4 non-fibrotic hypersensitivity pneumonitis, and 36 healthy controls in the United States and Mexico. Analyses included differential gene expression (Seurat), transcription factor activity imputation (DoRothEA-VIPER), and trajectory analyses (Monocle3/Velocyto-scVelo-CellRank). Measurements and Main Results: Overall, 501,534 peripheral blood mononuclear cells from 110 patients and controls and 88,336 bronchoalveolar lavage cells from 19 patients were profiled. Compared to controls, fibrotic hypersensitivity pneumonitis has elevated classical monocytes (adjusted-p=2.5e-3) and are enriched in CCL3hi/CCL4hi and S100Ahi classical monocytes (adjusted-p<2.2e-16). Trajectory analyses demonstrate that S100Ahi classical monocytes differentiate into SPP1hi lung macrophages associated with fibrosis. Compared to both controls and idiopathic pulmonary fibrosis, fibrotic hypersensitivity pneumonitis patient cells are significantly enriched in GZMhi cytotoxic T cells. These cells exhibit transcription factor activities indicative of TGFß and TNFα/NFκB pathways. These results are publicly available at https://ildimmunecellatlas.org. Conclusions: Single-cell transcriptomics of fibrotic hypersensitivity pneumonitis patients uncovered novel immune perturbations, including previously undescribed increases in GZMhi cytotoxic CD4+ and CD8+ T cells - reflecting this disease's unique inflammatory T-cell driven nature - as well as increased S100Ahi and CCL3hi/CCL4hi classical monocytes also observed in idiopathic pulmonary fibrosis. Both cell populations may guide the development of new biomarkers and therapeutic interventions.

6.
Eur Respir J ; 63(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38212075

RESUMEN

The pleural lining of the thorax regulates local immunity, inflammation and repair. A variety of conditions, both benign and malignant, including pleural mesothelioma, can affect this tissue. A lack of knowledge concerning the mesothelial and stromal cells comprising the pleura has hampered the development of targeted therapies. Here, we present the first comprehensive single-cell transcriptomic atlas of the human parietal pleura and demonstrate its utility in elucidating pleural biology. We confirm the presence of known universal fibroblasts and describe novel, potentially pleural-specific, fibroblast subtypes. We also present transcriptomic characterisation of multiple in vitro models of benign and malignant mesothelial cells, and characterise these through comparison with in vivo transcriptomic data. While bulk pleural transcriptomes have been reported previously, this is the first study to provide resolution at the single-cell level. We expect our pleural cell atlas will prove invaluable to those studying pleural biology and disease. It has already enabled us to shed light on the transdifferentiation of mesothelial cells, allowing us to develop a simple method for prolonging mesothelial cell differentiation in vitro.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurales , Humanos , Pleura/patología , Mesotelioma/genética , Mesotelioma/patología , Mesotelioma Maligno/patología , Neoplasias Pleurales/genética , Neoplasias Pleurales/patología , Perfilación de la Expresión Génica
7.
Eur Respir J ; 63(1)2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918852

RESUMEN

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática , Animales , Humanos , Ratones , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , Pulmón/patología
8.
Am J Respir Crit Care Med ; 207(11): 1498-1514, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36917778

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive lung scarring. IPF-related pulmonary vascular remodeling and pulmonary hypertension (PH) result in a particularly poor prognosis. Objectives: To study the pathogenesis of vascular remodeling in fibrotic lungs and its contribution to progression of fibrosis. Methods: We used an experimental model of lung fibrosis associated with PH by transient overexpression of active TGF-ß1 (transforming growth factor-ß1). Samples from patients with fibrotic lung diseases were analyzed in depth using immunostaining, gene expression, and gene mutations. Measurements and Main Results: We found a reduction in endothelial cells (ECs) and activation of vascular smooth muscle cells (VSMCs) in fibrotic lungs. Coculturing fibroblasts with VSMCs or ECs from fibrotic lungs induced fibrotic phenotypes in fibroblasts. IPF fibroblasts induced EC death and activation of VSMCs in coculture systems. Decreased concentrations of BMPR2 (bone morphogenic protein receptor 2) and its signaling were observed in ECs and VSMCs from fibrotic lungs in both rats and humans. On fibroblasts treated with media from VSMCs, BMPR2 suppression in VSMCs led to fibrogenic effects. Tacrolimus activated BMPR2 signaling and attenuated fibrosis and PH in rodent lungs. Whole-exome sequencing revealed rare mutations in PH-related genes, including BMPR2, in patients with IPF undergoing transplantation. A unique missense BMPR2 mutation (p.Q721R) was discovered to have dysfunctional effects on BMPR2 signaling. Conclusions: Endothelial dysfunction and vascular remodeling in PH secondary to pulmonary fibrosis enhance fibrogenesis through impaired BMPR2 signaling. Tacrolimus may have value as a treatment of advanced IPF and concomitant PH. Genetic abnormalities may determine the development of PH in advanced IPF.


Asunto(s)
Hipertensión Pulmonar , Fibrosis Pulmonar Idiopática , Humanos , Ratas , Animales , Remodelación Vascular , Células Endoteliales/metabolismo , Tacrolimus , Pulmón/patología , Fibrosis Pulmonar Idiopática/patología , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Fibroblastos/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética
9.
Pneumologie ; 78(3): 151-166, 2024 Mar.
Artículo en Alemán | MEDLINE | ID: mdl-38408486

RESUMEN

The present recommendations on the therapy of sarcoidosis of the German Respiratory Society (DGP) was written in 2023 as a German-language supplement and update of the international guidelines of the European Respiratory Society (ERS) from 2021. It contains 5 PICO questions (Patients, Intervention, Comparison, Outcomes) agreed in the consensus process, which are explained in the background text of the four articles: Confirmation of diagnosis and monitoring of the disease under therapy, general therapy recommendations, therapy of cutaneous sarcoidosis, therapy of cardiac sarcoidosis.


Asunto(s)
Neumología , Sarcoidosis , Humanos , Sarcoidosis/diagnóstico , Sarcoidosis/terapia , Sociedades Médicas , Alemania
10.
BMC Bioinformatics ; 24(1): 318, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608264

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) technology has enabled assessment of transcriptome-wide changes at single-cell resolution. Due to the heterogeneity in environmental exposure and genetic background across subjects, subject effect contributes to the major source of variation in scRNA-seq data with multiple subjects, which severely confounds cell type specific differential expression (DE) analysis. Moreover, dropout events are prevalent in scRNA-seq data, leading to excessive number of zeroes in the data, which further aggravates the challenge in DE analysis. RESULTS: We developed iDESC to detect cell type specific DE genes between two groups of subjects in scRNA-seq data. iDESC uses a zero-inflated negative binomial mixed model to consider both subject effect and dropouts. The prevalence of dropout events (dropout rate) was demonstrated to be dependent on gene expression level, which is modeled by pooling information across genes. Subject effect is modeled as a random effect in the log-mean of the negative binomial component. We evaluated and compared the performance of iDESC with eleven existing DE analysis methods. Using simulated data, we demonstrated that iDESC had well-controlled type I error and higher power compared to the existing methods. Applications of those methods with well-controlled type I error to three real scRNA-seq datasets from the same tissue and disease showed that the results of iDESC achieved the best consistency between datasets and the best disease relevance. CONCLUSIONS: iDESC was able to achieve more accurate and robust DE analysis results by separating subject effect from disease effect with consideration of dropouts to identify DE genes, suggesting the importance of considering subject effect and dropouts in the DE analysis of scRNA-seq data with multiple subjects.


Asunto(s)
Modelos Estadísticos , Transcriptoma , Humanos , Análisis de Secuencia de ARN
11.
Am J Pathol ; 192(8): 1110-1121, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35649494

RESUMEN

Alveolar capillary dysplasia (ACD) is a rare lung developmental disorder leading to persistent pulmonary arterial hypertension and fatal outcomes in newborns. The current study analyzed the microvascular morphology and the underlying molecular background of ACD. One ACD group (n = 7), one pulmonary arterial hypertension group (n = 20), and one healthy con1trol group (n = 16) were generated. Samples of histologically confirmed ACD were examined by exome sequencing and array-based comparative genomic hybridization. Vascular morphology was analyzed using scanning electron microscopy of microvascular corrosion casts. Gene expression and biological pathways were analyzed using two panels on inflammation/kinase-specific genes and a comparison analysis tool. Compartment-specific protein expression was analyzed using immunostaining. In ACD, there was an altered capillary network, a high prevalence of intussusceptive angiogenesis, and increased activity of C-X-C motif chemokine receptor 4 (CXCR4), hypoxia-inducible factor 1α (HIF1A), and angiopoietin signaling pathways compared with pulmonary arterial hypertension/healthy controls. Histologically, there was a markedly increased prevalence of endothelial tyrosine kinase receptor (TEK/TIE2)+ macrophages in ACD, compared with the other groups, whereas the CXCR4 ligand CXCL12 and HIF1A showed high expression in all groups. ACD is characterized by dysfunctional capillaries and a high prevalence of intussusceptive angiogenesis. The results indicate that endothelial CXCR4, HIF1A, and angiopoietin signaling as well as TIE2+ macrophages are crucial for the induction of intussusceptive angiogenesis and vascular remodeling. Future studies should address the use of anti-angiogenic agents in ACD, where TIE2 appears as a promising target.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Hipertensión Arterial Pulmonar , Angiopoyetinas , Hibridación Genómica Comparativa , Humanos , Recién Nacido , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/anomalías
12.
PLoS Comput Biol ; 18(9): e1010468, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36095011

RESUMEN

Studies comparing single cell RNA-Seq (scRNA-Seq) data between conditions mainly focus on differences in the proportion of cell types or on differentially expressed genes. In many cases these differences are driven by changes in cell interactions which are challenging to infer without spatial information. To determine cell-cell interactions that differ between conditions we developed the Cell Interaction Network Inference (CINS) pipeline. CINS combines Bayesian network analysis with regression-based modeling to identify differential cell type interactions and the proteins that underlie them. We tested CINS on a disease case control and on an aging mouse dataset. In both cases CINS correctly identifies cell type interactions and the ligands involved in these interactions improving on prior methods suggested for cell interaction predictions. We performed additional mouse aging scRNA-Seq experiments which further support the interactions identified by CINS.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de la Célula Individual , Animales , Teorema de Bayes , Comunicación Celular , Perfilación de la Expresión Génica/métodos , Ligandos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos
13.
Am J Respir Crit Care Med ; 205(1): 60-74, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34724391

RESUMEN

Rationale: Fibrotic hypersensitivity pneumonitis (fHP) is an interstitial lung disease caused by sensitization to an inhaled allergen. Objectives: To identify the molecular determinants associated with progression of fibrosis. Methods: Nine fHP explant lungs and six unused donor lungs (as controls) were systematically sampled (4 samples/lung). According to microcomputed tomography measures, fHP cores were clustered into mild, moderate, and severe fibrosis groups. Gene expression profiles were assessed using weighted gene co-expression network analysis, xCell, gene ontology, and structure enrichment analysis. Gene expression of the prevailing molecular traits was also compared with idiopathic pulmonary fibrosis (IPF). The explant lung findings were evaluated in separate clinical fHP cohorts using tissue, BAL samples, and computed tomography scans. Measurements and Main Results: We found six molecular traits that associated with differential lung involvement. In fHP, extracellular matrix and antigen presentation/sensitization transcriptomic signatures characterized lung zones with only mild structural and histological changes, whereas signatures involved in honeycombing and B cells dominated the transcriptome in the most severely affected lung zones. With increasing disease severity, endothelial function was progressively lost, and progressive disruption in normal cellular homeostatic processes emerged. All six were also found in IPF, with largely similar associations with disease microenvironments. The molecular traits correlated with in vivo disease behavior in a separate clinical fHP cohort. Conclusions: We identified six molecular traits that characterize the morphological progression of fHP and associate with in vivo clinical behavior. Comparing IPF with fHP, the transcriptome landscape was determined considerably by local disease extent rather than by diagnosis alone.


Asunto(s)
Alveolitis Alérgica Extrínseca/genética , Alveolitis Alérgica Extrínseca/patología , Pulmón/patología , Transcriptoma , Adulto , Anciano , Alveolitis Alérgica Extrínseca/diagnóstico , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Fibrosis , Perfilación de la Expresión Génica , Marcadores Genéticos , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad
14.
Am J Respir Crit Care Med ; 206(12): 1463-1479, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-35998281

RESUMEN

Rationale: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and often fatal disorder. Two U.S. Food and Drug Administration-approved antifibrotic drugs, nintedanib and pirfenidone, slow the rate of decline in lung function, but responses are variable and side effects are common. Objectives: Using an in silico data-driven approach, we identified a robust connection between the transcriptomic perturbations in IPF disease and those induced by saracatinib, a selective Src kinase inhibitor originally developed for oncological indications. Based on these observations, we hypothesized that saracatinib would be effective at attenuating pulmonary fibrosis. Methods: We investigated the antifibrotic efficacy of saracatinib relative to nintedanib and pirfenidone in three preclinical models: 1) in vitro in normal human lung fibroblasts; 2) in vivo in bleomycin and recombinant Ad-TGF-ß (adenovirus transforming growth factor-ß) murine models of pulmonary fibrosis; and 3) ex vivo in mice and human precision-cut lung slices from these two murine models as well as patients with IPF and healthy donors. Measurements and Main Results: In each model, the effectiveness of saracatinib in blocking fibrogenic responses was equal or superior to nintedanib and pirfenidone. Transcriptomic analyses of TGF-ß-stimulated normal human lung fibroblasts identified specific gene sets associated with fibrosis, including epithelial-mesenchymal transition, TGF-ß, and WNT signaling that was uniquely altered by saracatinib. Transcriptomic analysis of whole-lung extracts from the two animal models of pulmonary fibrosis revealed that saracatinib reverted many fibrogenic pathways, including epithelial-mesenchymal transition, immune responses, and extracellular matrix organization. Amelioration of fibrosis and inflammatory cascades in human precision-cut lung slices confirmed the potential therapeutic efficacy of saracatinib in human lung fibrosis. Conclusions: These studies identify novel Src-dependent fibrogenic pathways and support the study of the therapeutic effectiveness of saracatinib in IPF treatment.


Asunto(s)
Fibrosis Pulmonar Idiopática , Inhibidores de Proteínas Quinasas , Animales , Humanos , Ratones , Bleomicina/efectos adversos , Fibroblastos/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Pulmón/patología , Inhibidores de Proteínas Quinasas/uso terapéutico , Familia-src Quinasas/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
15.
Circulation ; 144(4): 286-302, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34030460

RESUMEN

BACKGROUND: Cellular diversity of the lung endothelium has not been systematically characterized in humans. We provide a reference atlas of human lung endothelial cells (ECs) to facilitate a better understanding of the phenotypic diversity and composition of cells comprising the lung endothelium. METHODS: We reprocessed human control single-cell RNA sequencing (scRNAseq) data from 6 datasets. EC populations were characterized through iterative clustering with subsequent differential expression analysis. Marker genes were validated by fluorescent microscopy and in situ hybridization. scRNAseq of primary lung ECs cultured in vitro was performed. The signaling network between different lung cell types was studied. For cross-species analysis or disease relevance, we applied the same methods to scRNAseq data obtained from mouse lungs or from human lungs with pulmonary hypertension. RESULTS: Six lung scRNAseq datasets were reanalyzed and annotated to identify >15 000 vascular EC cells from 73 individuals. Differential expression analysis of EC revealed signatures corresponding to endothelial lineage, including panendothelial, panvascular, and subpopulation-specific marker gene sets. Beyond the broad cellular categories of lymphatic, capillary, arterial, and venous ECs, we found previously indistinguishable subpopulations; among venous EC, we identified 2 previously indistinguishable populations: pulmonary-venous ECs (COL15A1neg) localized to the lung parenchyma and systemic-venous ECs (COL15A1pos) localized to the airways and the visceral pleura; among capillary ECs, we confirmed their subclassification into recently discovered aerocytes characterized by EDNRB, SOSTDC1, and TBX2 and general capillary EC. We confirmed that all 6 endothelial cell types, including the systemic-venous ECs and aerocytes, are present in mice and identified endothelial marker genes conserved in humans and mice. Ligand-receptor connectome analysis revealed important homeostatic crosstalk of EC with other lung resident cell types. scRNAseq of commercially available primary lung ECs demonstrated a loss of their native lung phenotype in culture. scRNAseq revealed that endothelial diversity is maintained in pulmonary hypertension. Our article is accompanied by an online data mining tool (www.LungEndothelialCellAtlas.com). CONCLUSIONS: Our integrated analysis provides a comprehensive and well-crafted reference atlas of ECs in the normal lung and confirms and describes in detail previously unrecognized endothelial populations across a large number of humans and mice.


Asunto(s)
Biomarcadores , Células Endoteliales/metabolismo , Pulmón/metabolismo , Análisis de la Célula Individual , Capilares , Biología Computacional/métodos , Bases de Datos Genéticas , Susceptibilidad a Enfermedades , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Pulmón/irrigación sanguínea , Pulmón/citología , Microcirculación , Especificidad de Órganos , Arteria Pulmonar , Venas Pulmonares , Análisis de la Célula Individual/métodos , Transcriptoma
16.
Thorax ; 76(2): 134-143, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33303696

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is a genetic condition that causes early onset pulmonary emphysema and airways obstruction. The complete mechanisms via which AATD causes lung disease are not fully understood. To improve our understanding of the pathogenesis of AATD, we investigated gene expression profiles of bronchoalveolar lavage (BAL) and peripheral blood mononuclear cells (PBMCs) in AATD individuals. METHODS: We performed RNA-Seq on RNA extracted from matched BAL and PBMC samples isolated from 89 subjects enrolled in the Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Subjects were stratified by genotype and augmentation therapy. Supervised and unsupervised differential gene expression analyses were performed using Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene profiles associated with subjects' clinical variables. The genes in the most significant WGCNA module were used to cluster AATD individuals. Gene validation was performed by NanoString nCounter Gene Expression Assay. RESULT: We observed modest effects of AATD genotype and augmentation therapy on gene expression. When WGCNA was applied to BAL transcriptome, one gene module, ME31 (2312 genes), correlated with the highest number of clinical variables and was functionally enriched with numerous immune T-lymphocyte related pathways. This gene module identified two distinct clusters of AATD individuals with different disease severity and distinct PBMC gene expression patterns. CONCLUSIONS: We successfully identified novel clusters of AATD individuals where severity correlated with increased immune response independent of individuals' genotype and augmentation therapy. These findings may suggest the presence of previously unrecognised disease endotypes in AATD that associate with T-lymphocyte immunity and disease severity.


Asunto(s)
Redes Reguladoras de Genes , Enfermedad Pulmonar Obstructiva Crónica/genética , Deficiencia de alfa 1-Antitripsina/genética , Adulto , Líquido del Lavado Bronquioalveolar , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Neutrófilos/metabolismo , Estudios Prospectivos , Transcriptoma
17.
Eur Respir J ; 57(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33303550

RESUMEN

Bronchiolitis obliterans syndrome (BOS) is a major complication after lung transplantation (LTx). BOS is characterised by massive peribronchial fibrosis, leading to air trapping-induced pulmonary dysfunction. Cathepsin B, a lysosomal cysteine protease, has been shown to enforce fibrotic pathways in several diseases. However, the relevance of cathepsin B in BOS progression has not yet been addressed. The aim of the study was to elucidate the function of cathepsin B in BOS pathogenesis.We determined cathepsin B levels in bronchoalveolar lavage fluid (BALF) and lung tissue from healthy donors (HD) and BOS LTx patients. Cathepsin B activity was assessed via a fluorescence resonance energy transfer-based assay and protein expression was determined using Western blotting, ELISA and immunostaining. To investigate the impact of cathepsin B in the pathophysiology of BOS, we used an in vivo orthotopic left LTx mouse model. Mechanistic studies were performed in vitro using macrophage and fibroblast cell lines.We found a significant increase of cathepsin B activity in BALF and lung tissue from BOS patients, as well as in our murine model of lymphocytic bronchiolitis. Moreover, cathepsin B activity was associated with increased biosynthesis of collagen and had a negative effect on lung function. We observed that cathepsin B was mainly expressed in macrophages that infiltrated areas characterised by a massive accumulation of collagen deposition. Mechanistically, macrophage-derived cathepsin B contributed to transforming growth factor-ß1-dependent activation of fibroblasts, and its inhibition reversed the phenotype.Infiltrating macrophages release active cathepsin B, thereby promoting fibroblast activation and subsequent collagen deposition, which drive BOS. Cathepsin B represents a promising therapeutic target to prevent the progression of BOS.


Asunto(s)
Bronquiolitis Obliterante , Trasplante de Pulmón , Animales , Líquido del Lavado Bronquioalveolar , Catepsina B , Humanos , Pulmón , Ratones
18.
Eur Respir J ; 58(6)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34083402

RESUMEN

BACKGROUND: Sarcoidosis is a multisystem granulomatous disease of unknown origin with a variable and often unpredictable course and pattern of organ involvement. In this study we sought to identify specific bronchoalveolar lavage (BAL) cell gene expression patterns indicative of distinct disease phenotypic traits. METHODS: RNA sequencing by Ion Torrent Proton was performed on BAL cells obtained from 215 well-characterised patients with pulmonary sarcoidosis enrolled in the multicentre Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. Weighted gene co-expression network analysis and nonparametric statistics were used to analyse genome-wide BAL transcriptome. Validation of results was performed using a microarray expression dataset of an independent sarcoidosis cohort (Freiburg, Germany; n=50). RESULTS: Our supervised analysis found associations between distinct transcriptional programmes and major pulmonary phenotypic manifestations of sarcoidosis including T-helper type 1 (Th1) and Th17 pathways associated with hilar lymphadenopathy, transforming growth factor-ß1 (TGFB1) and mechanistic target of rapamycin (MTOR) signalling with parenchymal involvement, and interleukin (IL)-7 and IL-2 with airway involvement. Our unsupervised analysis revealed gene modules that uncovered four potential sarcoidosis endotypes including hilar lymphadenopathy with increased acute T-cell immune response; extraocular organ involvement with PI3K activation pathways; chronic and multiorgan disease with increased immune response pathways; and multiorgan involvement, with increased IL-1 and IL-18 immune and inflammatory responses. We validated the occurrence of these endotypes using gene expression, pulmonary function tests and cell differentials from Freiburg. CONCLUSION: Taken together, our results identify BAL gene expression programmes that characterise major pulmonary sarcoidosis phenotypes and suggest the presence of distinct disease molecular endotypes.


Asunto(s)
Sarcoidosis Pulmonar , Sarcoidosis , Lavado Broncoalveolar , Líquido del Lavado Bronquioalveolar , Humanos , Sarcoidosis Pulmonar/genética , Transcriptoma
19.
Respir Res ; 22(1): 122, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902571

RESUMEN

BACKGROUND: Asthma has been associated with impaired interferon response. Multiple cell types have been implicated in such response impairment and may be responsible for asthma immunopathology. However, existing models to study the immune response in asthma are limited by bulk profiling of cells. Our objective was to Characterize a model of peripheral blood mononuclear cells (PBMCs) of patients with severe asthma (SA) and its response to the TLR3 agonist Poly I:C using two single-cell methods. METHODS: Two complementary single-cell methods, DropSeq for single-cell RNA sequencing (scRNA-Seq) and mass cytometry (CyTOF), were used to profile PBMCs of SA patients and healthy controls (HC). Poly I:C-stimulated and unstimulated cells were analyzed in this study. RESULTS: PBMCs (n = 9414) from five SA (n = 6099) and three HC (n = 3315) were profiled using scRNA-Seq. Six main cell subsets, namely CD4 + T cells, CD8 + T cells, natural killer (NK) cells, B cells, dendritic cells (DCs), and monocytes, were identified. CD4 + T cells were the main cell type in SA and demonstrated a pro-inflammatory profile characterized by increased JAK1 expression. Following Poly I:C stimulation, PBMCs from SA had a robust induction of interferon pathways compared with HC. CyTOF profiling of Poly I:C stimulated and unstimulated PBMCs (n = 160,000) from the same individuals (SA = 5; HC = 3) demonstrated higher CD8 + and CD8 + effector T cells in SA at baseline, followed by a decrease of CD8 + effector T cells after poly I:C stimulation. CONCLUSIONS: Single-cell profiling of an in vitro model using PBMCs in patients with SA identified activation of pro-inflammatory pathways at baseline and strong response to Poly I:C, as well as quantitative changes in CD8 + effector cells. Thus, transcriptomic and cell quantitative changes are associated with immune cell heterogeneity in this model to evaluate interferon responses in severe asthma.


Asunto(s)
Asma/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Poli I-C/farmacología , Análisis de la Célula Individual , Adulto , Asma/diagnóstico , Asma/genética , Estudios de Casos y Controles , Células Cultivadas , Femenino , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Fenotipo , RNA-Seq , Índice de Severidad de la Enfermedad , Factores de Tiempo , Transcriptoma , Adulto Joven
20.
Respiration ; 100(3): 238-271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33486500

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a severe and often fatal disease. Diagnosis of IPF requires considerable expertise and experience. Since the publication of the international IPF guideline in the year 2011 and the update 2018 several studies and technical advances have occurred, which made a new assessment of the diagnostic process mandatory. The goal of this guideline is to foster early, confident, and effective diagnosis of IPF. The guideline focusses on the typical clinical context of an IPF patient and provides tools to exclude known causes of interstitial lung disease including standardized questionnaires, serologic testing, and cellular analysis of bronchoalveolar lavage. High-resolution computed tomography remains crucial in the diagnostic workup. If it is necessary to obtain specimens for histology, transbronchial lung cryobiopsy is the primary approach, while surgical lung biopsy is reserved for patients who are fit for it and in whom a bronchoscopic diagnosis did not provide the information needed. After all, IPF is a diagnosis of exclusion and multidisciplinary discussion remains the golden standard of diagnosis.


Asunto(s)
Fibrosis Pulmonar Idiopática/diagnóstico , Pulmón , Biopsia/métodos , Lavado Broncoalveolar/métodos , Broncoscopía/métodos , Diagnóstico Diferencial , Humanos , Comunicación Interdisciplinaria , Pulmón/diagnóstico por imagen , Pulmón/patología , Enfermedades Pulmonares Intersticiales/diagnóstico , Selección de Paciente , Pruebas Serológicas/métodos , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA