Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Immunol ; 44(5): 916-25, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16697465

RESUMEN

The pro-inflammatory cytokine GM-CSF is aberrantly produced in many autoimmune and chronic inflammatory human diseases. GM-CSF neutralization by antibodies has been shown to have a profound therapeutic effect in animal models of rheumatoid arthritis, inflammatory lung diseases, psoriasis and multiple sclerosis. Moreover, the absence of GM-CSF in null mutant mice ameliorates or prevents certain of these diseases. Here we describe the biophysical and biological properties of a human anti-GM-CSF IgG1 antibody designated MT203, which was derived by phage display guided selection. MT203 bound with picomolar affinity to an epitope on human and macaque GM-CSF involved in high-affinity receptor interaction. As a consequence, the antibody potently prevented both GM-CSF-induced proliferation of TF-1 cells with a sub-nanomolar IC50 value and the production of the chemokine IL-8 by U937 cells. MT203 neutralized equally well recombinant (r) human (h) GM-CSF from Escherichia coli and yeast, and also normally glycosylated GM-CSF secreted by human lung epithelial cells in response to IL-1beta stimulation. Furthermore, MT203 significantly reduced both survival and activation of peripheral human eosinophils as may be required for effective treatment of inflammatory lung diseases. The antibody did not show a detectable loss of neutralizing activity after 5 days in human serum at 37 degrees C. Based on its favorable properties, MT203 has been selected for development as a novel anti-inflammatory human monoclonal antibody with therapeutic potential in a multitude of human autoimmune and inflammatory diseases.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Inmunoglobulina G/inmunología , Animales , Antígenos CD/inmunología , Antígenos de Diferenciación de Linfocitos T/inmunología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Eosinófilos/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Humanos , Interleucina-1beta/farmacología , Interleucina-8/inmunología , Lectinas Tipo C , Macaca , Proteínas Recombinantes
2.
Protein Eng Des Sel ; 19(10): 461-70, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16868004

RESUMEN

GM-CSF (granulocyte-macrophage colony stimulating factor) plays a central role in inflammatory processes. Treatment with antibodies neutralizing murine GM-CSF showed significant therapeutic effects in mouse models of inflammatory diseases. We constructed by phage display technology a human scFv, which could potently neutralize human GM-CSF. At first, a human V(L) repertoire was combined with the V(H) domain of a parental GM-CSF-neutralizing rat antibody. One dominant rat/human scFv clone was selected, neutralizing human GM-CSF with an IC50 of 7.3 nM. The human V(L) of this clone was then combined with a human V(H) repertoire. The latter preserved the CDR 3 of the parental rat V(H) domain to retain binding specificity. Several human scFvs were selected, which neutralized human GM-CSF at low nanomolar concentrations (IC50 > or = 2.6 nM). To increase serum half-life, a branched 40 kDa PEG-polymer was coupled to the most potent GM-CSF-neutralizing scFv (3077) via an additional C-terminal cysteine. PEG conjugation had a negligible effect on the in vitro neutralizing potential of the scFv, although it caused a significant drop in binding affinity owing to a reduced on-rate. It also significantly increased the stability of the scFv at elevated temperatures. In mouse experiments, the PEGylated scFv 3077 showed a significantly prolonged elimination half-life of 59 h as compared with 2 h for the unconjugated scFv version. PEGylated scFv 3077 is a potential candidate for development of a novel antibody therapy to treat pro-inflammatory human diseases.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos/química , Fragmentos de Inmunoglobulinas/química , Región Variable de Inmunoglobulina/química , Polietilenglicoles/química , Animales , Relación Dosis-Respuesta a Droga , Calor , Humanos , Cinética , Ratones , Biblioteca de Péptidos , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Ratas , Análisis de Secuencia de ADN
3.
J Chromatogr B Analyt Technol Biomed Life Sci ; 786(1-2): 127-36, 2003 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-12651008

RESUMEN

Citrate synthase (CS) is a dimeric, mitochondrial protein, composed of two identical subunits (M(r) 48969 each). The nuclear-encoded alpha-helical protein is imported into mitochondria post-translationally where it catalyses the first step of the citric cycle. Furthermore, the pathway of thermal unfolding as well as the folding pathway was studied extensively, making CS a well-suited substrate protein for studying chaperone function. In chaperone research the quality of the substrate proteins is essential to guaranty the reproducibility of the results. In this context, we here describe the GroE-enhanced recombinant expression and purification of CS. CS was expressed in E. coli by using an arabinose regulated T7 promotor. Under standard expression conditions only insoluble, inactive CS was detected. Interestingly, the expression of soluble and active CS was possible when GroEL/GroES was co-expressed. Furthermore, a shift to lower expression temperatures increased the amount of soluble, active CS. We describe for the first time, the purification of CS in soluble and active form by following a CiPP strategy (capture, intermediate purification, polishing). After the initial capturing step on DEAE-Sephacel the protein was further purified on a Q-Sepharose column. After these two steps of anion-exchange chromatography a final size-exclusion chromatography step on a Superdex 75-pg column yields CS with a purity over 99%. Using this expression and purification strategy 1 mg CS per g E. coli wet weight were purified.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citrato (si)-Sintasa/genética , Citrato (si)-Sintasa/aislamiento & purificación , Proteínas de Choque Térmico/metabolismo , Mitocondrias Cardíacas/enzimología , Animales , Secuencia de Bases , Chaperoninas , Cromatografía por Intercambio Iónico , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Proteínas de Escherichia coli , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Reproducibilidad de los Resultados , Porcinos
4.
Chembiochem ; 4(9): 870-7, 2003 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-12964162

RESUMEN

Hsp90 is one of the most abundant chaperone proteins in the cytosol. In an ATP-dependent manner it plays an essential role in the folding and activation of a range of client proteins involved in signal transduction and cell cycle regulation. We used NMR shift perturbation experiments to obtain information on the structural implications of the binding of AMP-PNP (adenylyl-imidodiphosphate-a non-hydrolysable ATP analogue), ADP and the inhibitors radicicol and geldanamycin. Analysis of (1)H,(15)N correlation spectra showed a specific pattern of chemical shift perturbations at N210 (ATP binding domain of Hsp90, residues 1-210) upon ligand binding. This can be interpreted qualitatively either as a consequence of direct ligand interactions or of ligand-induced conformational changes within the protein. All ligands show specific interactions in the binding site, which is known from the crystal structure of the N-terminal domain of Hsp90. For AMP-PNP and ADP, additional shift perturbations of residues outside the binding pocket were observed and can be regarded as a result of conformational rearrangement upon binding. According to the crystal structures, these regions are the first alpha-helix and the "ATP-lid" ranging from amino acids 85 to 110. The N-terminal domain is therefore not a passive nucleotide-binding site, as suggested by X-ray crystallography, but responds to the binding of ATP in a dynamic way with specific structural changes required for the progression of the ATPase cycle.


Asunto(s)
Adenilil Imidodifosfato/metabolismo , Proteínas HSP90 de Choque Térmico/química , Lactonas/metabolismo , Quinonas/metabolismo , Secuencia de Aminoácidos , Benzoquinonas , Sitios de Unión , Escherichia coli/metabolismo , Proteínas HSP90 de Choque Térmico/aislamiento & purificación , Proteínas HSP90 de Choque Térmico/metabolismo , Lactamas Macrocíclicas , Macrólidos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA