Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Arch Pharm (Weinheim) ; 357(2): e2300536, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37932028

RESUMEN

Although histone deacetylase (HDAC) inhibitors show promise in treating various types of hematologic malignancies, they have some limitations, including poor pharmacokinetics and off-target side effects. Prodrug design has shown promise as an approach to improve pharmacokinetic properties and to improve target tissue specificity. In this work, several bioreductive prodrugs for class I HDACs were designed based on known selective HDAC inhibitors. The zinc-binding group of the HDAC inhibitors was masked with various nitroarylmethyl residues to make them substrates of nitroreductase (NTR). The developed prodrugs showed weak HDAC inhibitory activity compared to their parent inhibitors. The prodrugs were tested against wild-type and NTR-transfected THP1 cells. Cellular assays showed that both 2-nitroimidazole-based prodrugs 5 and 6 were best activated by the NTR and exhibited potent activity against NTR-THP1 cells. Compound 6 showed the highest cellular activity (GI50 = 77 nM) and exhibited moderate selectivity. Moreover, activation of prodrug 6 by NTR was confirmed by liquid chromatography-mass spectrometry analysis, which showed the release of the parent inhibitor after incubation with Escherichia coli NTR. Thus, compound 6 can be considered a novel prodrug selective for class I HDACs, which could be used as a good starting point for increasing selectivity and for further optimization.


Asunto(s)
Leucemia Mieloide Aguda , Profármacos , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Profármacos/farmacología , Profármacos/química , Terapia Genética , Relación Estructura-Actividad , Escherichia coli , Leucemia Mieloide Aguda/tratamiento farmacológico
2.
Int J Mol Sci ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38279359

RESUMEN

HDAC11 is a class IV histone deacylase with no crystal structure reported so far. The catalytic domain of HDAC11 shares low sequence identity with other HDAC isoforms, which makes conventional homology modeling less reliable. AlphaFold is a machine learning approach that can predict the 3D structure of proteins with high accuracy even in absence of similar structures. However, the fact that AlphaFold models are predicted in the absence of small molecules and ions/cofactors complicates their utilization for drug design. Previously, we optimized an HDAC11 AlphaFold model by adding the catalytic zinc ion and minimization in the presence of reported HDAC11 inhibitors. In the current study, we implement a comparative structure-based virtual screening approach utilizing the previously optimized HDAC11 AlphaFold model to identify novel and selective HDAC11 inhibitors. The stepwise virtual screening approach was successful in identifying a hit that was subsequently tested using an in vitro enzymatic assay. The hit compound showed an IC50 value of 3.5 µM for HDAC11 and could selectively inhibit HDAC11 over other HDAC subtypes at 10 µM concentration. In addition, we carried out molecular dynamics simulations to further confirm the binding hypothesis obtained by the docking study. These results reinforce the previously presented AlphaFold optimization approach and confirm the applicability of AlphaFold models in the search for novel inhibitors for drug discovery.


Asunto(s)
Modelos Químicos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Dominio Catalítico , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química
3.
FASEB J ; 36(5): e22287, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35349187

RESUMEN

Class IIa histone deacetylases (HDACs) play critical roles in vertebrate development and physiology, yet direct evidence of their intrinsic deacetylase activity and on substrate specificity regarding the peptide sequence is still missing. In this study, we designed and synthesized a combinatorial peptide library allowing us to profile class IIa HDACs sequence specificity at positions +3 through -3 from the central lysine modified by the well-accepted trifluoroacetyl function. Our data revealed a strong preference for bulky aromatic acids directly flanking the central trifluoroacetyllysine, while all class IIa HDACs disfavor positively charged residues and proline at the +1/-1 positions. The chemical nature of amino acid residues N-terminally to the central trifluoroacetyllysine has a more profound effect on substrate recognition as compared to residues located C-terminally. These findings were validated by designing selected favored and disfavored peptide sequences, with the favored ones are accepted with catalytic efficacy of 75 000 and 525 000 M-1  s-1 for HDAC7 and HDAC5, respectively. Results reported here could help in developing class IIa HDACs inhibitors and also in the search for new natural class IIa HDACs substrates.


Asunto(s)
Inhibidores de Histona Desacetilasas , Histona Desacetilasas , Secuencia de Aminoácidos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Péptidos , Especificidad por Sustrato
4.
FASEB J ; 36(1): e22059, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847273

RESUMEN

The mineralocorticoid receptor (MR) with its ligand aldosterone (aldo) physiologically regulates electrolyte homeostasis and blood pressure but it can also lead to pathophysiological effects in the cardiovascular system. Previous results show that posttranslational modifications (PTM) can influence MR signaling and function. Based on in silico and in vitro data, casein kinase 1 (CK1) was predicted as a candidate for MR phosphorylation. To gain a deeper mechanistic insight into MR activation, we investigated the influence of CK1 on MR function in HEK cells. Co-immunoprecipitation experiments indicated that the MR is located in a protein-protein complex with CK1α and CK1ε. Reporter gene assays with pharmacological inhibitors and MR constructs demonstrated that especially CK1ε acts as a positive modulator of GRE activity via the C-terminal MR domains CDEF. CK1 enhanced the binding affinity of aldosterone to the MR, facilitated nuclear translocation and DNA interaction of the MR, and led to expression changes of pathophysiologically relevant genes like Per-1 and Phlda1. By peptide microarray and site-directed mutagenesis experiments, we identified the highly conserved T800 as a direct CK1 phosphorylation site of the MR, which modulates the nuclear import and genomic activity of the receptor. Direct phosphorylation of the MR was unable to fully account for all of the CK1 effects on MR signaling, suggesting additional phosphorylation of MR co-regulators. By LC/MS/MS, we identified the MR-associated proteins NOLC1 and TCOF1 as candidates for such CK1-regulated co-factors. Overall, we found that CK1 acts as a co-activator of MR GRE activity through direct and indirect phosphorylation, which accelerates cytosolic-nuclear trafficking, facilitates nuclear accumulation and DNA binding of the MR, and increases the expression of pathologically relevant MR-target genes.


Asunto(s)
Quinasa de la Caseína I/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transcripción Genética , Quinasa de la Caseína I/genética , Células HEK293 , Humanos , Fosforilación , Dominios Proteicos , Receptores de Mineralocorticoides/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108579

RESUMEN

Lysine deacetylases, like histone deacetylases (HDACs) and sirtuins (SIRTs), are involved in many regulatory processes such as control of metabolic pathways, DNA repair, and stress responses. Besides robust deacetylase activity, sirtuin isoforms SIRT2 and SIRT3 also show demyristoylase activity. Interestingly, most of the inhibitors described so far for SIRT2 are not active if myristoylated substrates are used. Activity assays with myristoylated substrates are either complex because of coupling to enzymatic reactions or time-consuming because of discontinuous assay formats. Here we describe sirtuin substrates enabling direct recording of fluorescence changes in a continuous format. Fluorescence of the fatty acylated substrate is different when compared to the deacylated peptide product. Additionally, the dynamic range of the assay could be improved by the addition of bovine serum albumin, which binds the fatty acylated substrate and quenches its fluorescence. The main advantage of the developed activity assay is the native myristoyl residue at the lysine side chain avoiding artifacts resulting from the modified fatty acyl residues used so far for direct fluorescence-based assays. Due to the extraordinary kinetic constants of the new substrates (KM values in the low nM range, specificity constants between 175,000 and 697,000 M-1s-1) it was possible to reliably determine the IC50 and Ki values for different inhibitors in the presence of only 50 pM of SIRT2 using different microtiter plate formats.


Asunto(s)
Sirtuina 3 , Sirtuinas , Sirtuinas/metabolismo , Sirtuina 2/metabolismo , Lisina , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Péptidos , Colorantes
6.
Angew Chem Int Ed Engl ; 62(25): e202301543, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37029095

RESUMEN

Herein we report a mild, efficient, and epimerization-free method for the synthesis of peptide-derived 2-thiazolines and 5,6-dihydro-4H-1,3-thiazines based on a cyclodesulfhydration of N-thioacyl-2-mercaptoethylamine or N-thioacyl-3-mercaptopropylamine derivatives. The described reaction can be easily carried out in aqueous solutions at room temperature and it is triggered by change of the pH, leading to complex thiazoline or dihydrothiazine derivatives without epimerization in excellent to quantitative yields. The new method was applied in the total synthesis of the marine metabolite mollamide F, resulting in the revision of its stereochemistry.


Asunto(s)
Mercaptoetilaminas , Péptidos
7.
Biochemistry ; 61(17): 1705-1722, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35972884

RESUMEN

Sirtuins are protein deacylases regulating metabolism and stress responses and implicated in aging-related diseases. Modulators of the human sirtuins 1-7 are sought as chemical tools and potential therapeutics, for example, for treatment of cancer. We were able to show that 3-aryl-mercapto-succinylated- and 3-benzyl-mercapto-succinylated peptide derivatives yield selective Sirt5 inhibitors with low nM Ki values. Here, we synthesized and characterized 3-aryl-mercapto-butyrylated peptide derivatives as effective and selective sirtuin 2 inhibitors with KD values in the low nanomolar range. According to kinetic measurements and microscale thermophoresis/surface plasmon resonance experiments, the respective inhibitors bind with the 3-aryl-mercapto moiety in the selectivity pocket of Sirtuin 2, inducing a rearrangement of the active site. In contrast, 3-aryl-mercapto-nonalyl or palmitoyl derivatives are characterized by a switch in the binding mode blocking both the hydrophobic channel by the fatty acyl chain and the nicotinamide pocket by the 3-aryl-mercapto moiety.


Asunto(s)
Sirtuina 2 , Sirtuinas , Dominio Catalítico , Humanos , Lisina/metabolismo , Niacinamida , Péptidos , Sirtuina 2/metabolismo , Sirtuinas/metabolismo
8.
J Chem Inf Model ; 62(10): 2387-2397, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35467871

RESUMEN

Histone deacetylases (HDACs) are overexpressed in cancer, and their inhibition shows promising results in cancer therapy. In particular, selective class I HDAC inhibitors such as entinostat are proposed to be more beneficial in breast cancer treatment. Computational drug design is an inevitable part of today's drug discovery projects because of its unequivocal role in saving time and cost. Using three HDAC inhibitors trichostatin, vorinostat, and entinostat as template structures and a diverse fragment library, all synthetically accessible compounds thereof (∼3200) were generated virtually and filtered based on similarity against the templates and PAINS removal. The 298 selected structures were docked into the active site of HDAC I and ranked using a calculated binding affinity. Top-ranking structures were inspected manually, and, considering the ease of synthesis and drug-likeness, two new structures (3a and 3b) were proposed for synthesis and biological evaluation. The synthesized compounds were purified to a degree of more than 95% and structurally verified using various methods. The designed compounds 3a and 3b showed 65-80 and 5% inhibition on HDAC 1, 2, and 3 isoforms at a concentration of 10 µM, respectively. The novel compound 3a may be used as a lead structure for designing new HDAC inhibitors.


Asunto(s)
Antineoplásicos , Inhibidores de Histona Desacetilasas , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/química , Isoformas de Proteínas
9.
Int J Mol Sci ; 23(21)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36361557

RESUMEN

The protein lysine deacylases of the NAD+-dependent Sirtuin family contribute to metabolic regulation, stress responses, and aging processes, and the human Sirtuin isoforms, Sirt1-7, are considered drug targets for aging-related diseases. The nuclear isoform Sirt1 deacetylates histones and transcription factors to regulate, e.g., metabolic adaptations and circadian mechanisms, and it is used as a therapeutic target for Huntington's disease and psoriasis. Sirt1 is regulated through a multitude of mechanisms, including the interaction with regulatory proteins such as the inhibitors Tat and Dbc1 or the activator AROS. Here, we describe a molecular characterization of AROS and how it regulates Sirt1. We find that AROS is a partly intrinsically disordered protein (IDP) that inhibits rather than activates Sirt1. A biochemical characterization of the interaction including binding and stability assays, NMR spectroscopy, mass spectrometry, and a crystal structure of Sirtuin/AROS peptide complex reveal that AROS acts as a competitive inhibitor, through binding to the Sirt1 substrate peptide site. Our results provide molecular insights in the physiological regulation of Sirt1 by a regulator protein and suggest the peptide site as an opportunity for Sirt1-targeted drug development.


Asunto(s)
Sirtuina 1 , Sirtuinas , Humanos , Núcleo Celular/metabolismo , Histonas , Sirtuina 1/metabolismo , Sirtuinas/metabolismo , Factores de Transcripción/metabolismo
10.
Molecules ; 27(8)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35458724

RESUMEN

Class I histone deacetylases, HDAC1, HDAC2, and HDAC3, represent potential targets for cancer treatment. However, the development of isoform-selective drugs for these enzymes remains challenging due to their high sequence and structural similarity. In the current study, we applied a computational approach to predict the selectivity profile of developed inhibitors. Molecular docking followed by MD simulation and calculation of binding free energy was performed for a dataset of 2-aminobenzamides comprising 30 previously developed inhibitors. For each HDAC isoform, a significant correlation was found between the binding free energy values and in vitro inhibitory activities. The predictive accuracy and reliability of the best preforming models were assessed on an external test set of newly designed and synthesized inhibitors. The developed binding free-energy models are cost-effective methods and help to reduce the time required to prioritize compounds for further studies.


Asunto(s)
Inhibidores de Histona Desacetilasas , Pirazinas , Histona Desacetilasa 1 , Histona Desacetilasa 2 , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Isoformas de Proteínas , Pirazinas/química , Reproducibilidad de los Resultados
11.
J Biol Chem ; 295(9): 2614-2628, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31953325

RESUMEN

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic enzyme having tubulin deacetylase activity that has been unequivocally assigned to the second of the tandem catalytic domains. However, virtually no information exists on the contribution of other HDAC6 domains on tubulin recognition. Here, using recombinant protein expression, site-directed mutagenesis, fluorimetric and biochemical assays, microscale thermophoresis, and total internal reflection fluorescence microscopy, we identified the N-terminal, disordered region of HDAC6 as a microtubule-binding domain and functionally characterized it to the single-molecule level. We show that the microtubule-binding motif spans two positively charged patches comprising residues Lys-32 to Lys-58. We found that HDAC6-microtubule interactions are entirely independent of the catalytic domains and are mediated by ionic interactions with the negatively charged microtubule surface. Importantly, a crosstalk between the microtubule-binding domain and the deacetylase domain was critical for recognition and efficient deacetylation of free tubulin dimers both in vitro and in vivo Overall, our results reveal that recognition of substrates by HDAC6 is more complex than previously appreciated and that domains outside the tandem catalytic core are essential for proficient substrate deacetylation.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Acetilación , Secuencia de Aminoácidos , Dominio Catalítico , Humanos , Unión Proteica , Dominios Proteicos/fisiología , Especificidad por Sustrato
12.
Bioorg Chem ; 117: 105425, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34695733

RESUMEN

Histone deacylase 11 and human sirtuins are able to remove fatty acid-derived acyl moieties from the ε-amino group of lysine residues. Specific substrates are needed for investigating the biological functions of these enzymes. Additionally, appropriate screening systems are required for identification of modulators of enzymatic activities of HDAC11 and sirtuins. We designed and synthesized a set of activity probes by incorporation of a thioamide quencher unit into the fatty acid-derived acyl chain and a fluorophore in the peptide sequence. Systematic variation of both fluorophore and quencher position resulted "super-substrates" with catalytic constants of up to 15,000,000 M-1s-1 for human sirtuin 2 (Sirt2) enabling measurements using enzyme concentrations down to 100 pM in microtiter plate-based screening formats. It could be demonstrated that the stalled intermediate formed by the reaction of Sirt2-bound thiomyristoylated peptide and NAD+ has IC50 values below 200 pM.


Asunto(s)
Colorantes Fluorescentes/química , Histona Desacetilasas/metabolismo , Tomografía de Emisión de Positrones , Sirtuinas/metabolismo , Tioamidas/química , Transporte de Electrón , Colorantes Fluorescentes/farmacología , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Estructura Molecular , Procesos Fotoquímicos , Sirtuinas/antagonistas & inhibidores , Sirtuinas/química , Tioamidas/farmacología
13.
Int J Mol Sci ; 23(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35008795

RESUMEN

Class I histone deacetylases (HDACs) are key regulators of cell proliferation and they are frequently dysregulated in cancer cells. We report here the synthesis of a novel series of class-I selective HDAC inhibitors (HDACi) containing a 2-aminobenzamide moiety as a zinc-binding group connected with a central (piperazin-1-yl)pyrazine or (piperazin-1-yl)pyrimidine moiety. Some of the compounds were additionally substituted with an aromatic capping group. Compounds were tested in vitro against human HDAC1, 2, 3, and 8 enzymes and compared to reference class I HDACi (Entinostat (MS-275), Mocetinostat, CI994 and RGFP-966). The most promising compounds were found to be highly selective against HDAC1, 2 and 3 over the remaining HDAC subtypes from other classes. Molecular docking studies and MD simulations were performed to rationalize the in vitro data and to deduce a complete structure activity relationship (SAR) analysis of this novel series of class-I HDACi. The most potent compounds, including 19f, which blocks HDAC1, HDAC2, and HDAC3, as well as the selective HDAC1/HDAC2 inhibitors 21a and 29b, were selected for further cellular testing against human acute myeloid leukemia (AML) and erythroleukemic cancer (HEL) cells, taking into consideration their low toxicity against human embryonic HEK293 cells. We found that 19f is superior to the clinically tested class-I HDACi Entinostat (MS-275). Thus, 19f is a new and specific HDACi with the potential to eliminate blood cancer cells of various origins.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Simulación del Acoplamiento Molecular , Pirazinas/química , ortoaminobenzoatos/química , ortoaminobenzoatos/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/síntesis química , Benzamidas/química , Benzamidas/farmacología , Línea Celular Tumoral , Células HEK293 , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacocinética , Humanos , Espectroscopía de Protones por Resonancia Magnética , Piridinas/síntesis química , Piridinas/química , Piridinas/farmacología
14.
Proteomics ; 20(10): e2000007, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267065

RESUMEN

Targeted proteomics depends on the availability of stable isotope labeled (SIL) peptide standards, which for absolute protein quantification need to be absolutely quantified. In the present study, three new approaches for absolute quantification of SIL peptides are developed. All approaches rely on a quantification tag (Qtag) with a specific UV absorption. The Qtag is attached to the peptide during synthesis and is removed by tryptic digestion under standard proteomics workflow conditions. While one quantification method (method A) is designed to allow the fast and economic production of absolutely quantified SIL peptides, two other methods (methods B and C) are developed to enable the straightforward re-quantification of SIL peptides after reconstitution to control and monitor known problems related to peptide solubility, precipitation, and adhesion to vials. All methods yield consistent results when compared to each other and when compared to quantification by amino acid analysis. The precise quantitation methods are used to characterize the in vivo specificity of the H3 specific histone methyltransferase EZH2.


Asunto(s)
Marcaje Isotópico/normas , Péptidos/aislamiento & purificación , Proteínas/genética , Proteómica/normas , Aminoácidos/genética , Humanos , Espectrometría de Masas , Péptidos/química , Péptidos/genética , Proteínas/química , Rayos Ultravioleta
15.
FASEB J ; 33(3): 4035-4045, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30496698

RESUMEN

Histone deacetylase 6 (HDAC6) is a multidomain cytosolic hydrolase acting mostly on nonhistone protein substrates. Investigations of the substrate specificity of HDAC6 are confounded by the presence of 2 catalytically active deacetylase domains (DD1 and DD2). In this study, acetylome peptide microarrays and peptide libraries were used to map the substrate specificity of DD1 and DD2 of human HDAC6. The results show that DD1 is solely responsible for the deacetylation of substrates harboring the acetyllysine at their C terminus, whereas DD2 exclusively deacetylates peptides with an internal acetyllysine residue. Also, statistical analysis of the deacetylation data revealed amino acid preferences at individual positions flanking the acetyllysine, where glycine and arginine residues are favored at positions N-terminal to the central acetyllysine; negatively charged glutamate is strongly disfavored throughout the sequence. Finally, the deacylation activity of HDAC6 was profiled by using a panel of acyl derivatives of the optimized peptide substrate and showed that HDAC6 acts as a proficient deformylase. Our data thus offer a detailed insight into the substrate preferences of the individual HDAC6 domains at the peptide level, and these findings can in turn help in elucidating the biologic roles of the enzyme and facilitate the development of new domain-specific inhibitors as research tools or therapeutic agents.-Kutil, Z., Skultetyova, L., Rauh, D., Meleshin, M., Snajdr, I., Novakova, Z., Mikesova, J., Pavlicek, J., Hadzima, M., Baranova, P., Havlinova, B., Majer, P., Schutkowski, M., Barinka, C. The unraveling of substrate specificity of histone deacetylase 6 domains using acetylome peptide microarrays and peptide libraries.


Asunto(s)
Dominio Catalítico , Histona Desacetilasa 6/química , Células HEK293 , Histona Desacetilasa 6/metabolismo , Humanos , Lisina/química , Lisina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Electricidad Estática , Especificidad por Sustrato
16.
Biochemistry ; 58(48): 4777-4789, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31682411

RESUMEN

We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 µM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.


Asunto(s)
Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Biocatálisis , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Humanos , Cinética , Lisina/química , Lisina/metabolismo , Tioamidas/química , Tioamidas/metabolismo
17.
J Biol Chem ; 292(12): 4942-4952, 2017 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-28159843

RESUMEN

Reversible tyrosine phosphorylation is a widespread post-translational modification mechanism underlying cell physiology. Thus, understanding the mechanisms responsible for substrate selection by kinases and phosphatases is central to our ability to model signal transduction at a system level. Classical protein-tyrosine phosphatases can exhibit substrate specificity in vivo by combining intrinsic enzymatic specificity with the network of protein-protein interactions, which positions the enzymes in close proximity to their substrates. Here we use a high throughput approach, based on high density phosphopeptide chips, to determine the in vitro substrate preference of 16 members of the protein-tyrosine phosphatase family. This approach helped identify one residue in the substrate binding pocket of the phosphatase domain that confers specificity for phosphopeptides in a specific sequence context. We also present a Bayesian model that combines intrinsic enzymatic specificity and interaction information in the context of the human protein interaction network to infer new phosphatase substrates at the proteome level.


Asunto(s)
Fosfopéptidos/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Secuencia de Aminoácidos , Teorema de Bayes , Sitios de Unión , Humanos , Modelos Biológicos , Simulación del Acoplamiento Molecular , Fosfopéptidos/química , Fosforilación , Conformación Proteica , Dominios Proteicos , Mapas de Interacción de Proteínas , Proteínas Tirosina Fosfatasas/química , Especificidad por Sustrato
18.
Bioorg Med Chem ; 25(18): 5002-5007, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-28684010

RESUMEN

Sortases catalyze the attachment of surface proteins to the peptidoglycan layer of gram-positive bacteria and further represent powerful tools of protein chemistry. During catalysis sortases cleave a donor substrate containing the LPxTG (x=any amino acid) sorting motif under formation of an enzyme-bound thioester and ligate this intermediate to an acceptor protein containing an N-terminal glycine residue. In addition to the well-established sortase A of Staphylococcus aureus several homologs of this enzyme have been identified in the genomes of gram-positive bacteria. We have profiled the specificity of seven sortases of Staphylococci and Streptococci origin and observed that sortases of the latter class displayed a more relaxed specificity for donor and acceptor substrates than their Staphylococci counterparts. Streptococci sortases prefer an LPKLG donor substrate sequence compared to the canonical sorting motif LPKTG. These findings might facilitate the use of Streptococci sortases as tools of protein chemistry.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Cromatografía Líquida de Alta Presión , Cisteína Endopeptidasas/genética , Espectrometría de Masas , Péptidos/análisis , Péptidos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Espectrometría de Fluorescencia , Staphylococcus/enzimología , Especificidad por Sustrato
19.
Angew Chem Int Ed Engl ; 56(4): 1007-1011, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-27990725

RESUMEN

Sirtuins are protein deacylases regulating metabolism and stress responses, and are implicated in aging-related diseases. Small molecule activators for the human sirtuins Sirt1-7 are sought as chemical tools and potential therapeutics, such as for cancer. Activators are available for Sirt1 and exploit its unique N-terminus, whereas drug-like activators for Sirt2-7 are lacking. We synthesized and screened pyrrolo[1,2-a]quinoxaline derivatives, yielding the first synthetic Sirt6 activators. Biochemical assays show direct, substrate-independent compound binding to the Sirt6 catalytic core and potent activation of Sirt6-dependent deacetylation of peptide substrates and complete nucleosomes. Crystal structures of Sirt6/activator complexes reveal that the compounds bind to a Sirt6-specific acyl channel pocket and identify key interactions. Our results establish potent Sirt6 activation with small molecules and provide a structural basis for further development of Sirt6 activators as tools and therapeutics.


Asunto(s)
Pirroles/metabolismo , Quinoxalinas/metabolismo , Sirtuinas/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Pirroles/química , Quinoxalinas/química , Sirtuinas/química , Bibliotecas de Moléculas Pequeñas/química
20.
Proc Natl Acad Sci U S A ; 110(30): E2772-81, 2013 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-23840057

RESUMEN

Sirtuins are protein deacetylases regulating metabolism and stress responses. The seven human Sirtuins (Sirt1-7) are attractive drug targets, but Sirtuin inhibition mechanisms are mostly unidentified. We report the molecular mechanism of Sirtuin inhibition by 6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxamide (Ex-527). Inhibitor binding to potently inhibited Sirt1 and Thermotoga maritima Sir2 and to moderately inhibited Sirt3 requires NAD(+), alone or together with acetylpeptide. Crystal structures of several Sirtuin inhibitor complexes show that Ex-527 occupies the nicotinamide site and a neighboring pocket and contacts the ribose of NAD(+) or of the coproduct 2'-O-acetyl-ADP ribose. Complex structures with native alkylimidate and thio-analog support its catalytic relevance and show, together with biochemical assays, that only the coproduct complex is relevant for inhibition by Ex-527, which stabilizes the closed enzyme conformation preventing product release. Ex-527 inhibition thus exploits Sirtuin catalysis, and kinetic isoform differences explain its selectivity. Our results provide insights in Sirtuin catalysis and inhibition with important implications for drug development.


Asunto(s)
Carbazoles/farmacología , NAD/metabolismo , Sirtuinas/antagonistas & inhibidores , Acetilación , Carbazoles/química , Modelos Moleculares , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA