Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nucleic Acids Res ; 51(21): 11613-11633, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37855680

RESUMEN

Development of multicellular animals requires epigenetic repression by Polycomb group proteins. The latter assemble in multi-subunit complexes, of which two kinds, Polycomb Repressive Complex 1 (PRC1) and Polycomb Repressive Complex 2 (PRC2), act together to repress key developmental genes. How PRC1 and PRC2 recognize specific genes remains an open question. Here we report the identification of several hundreds of DNA elements that tether canonical PRC1 to human developmental genes. We use the term tether to describe a process leading to a prominent presence of canonical PRC1 at certain genomic sites, although the complex is unlikely to interact with DNA directly. Detailed analysis indicates that sequence features associated with PRC1 tethering differ from those that favour PRC2 binding. Throughout the genome, the two kinds of sequence features mix in different proportions to yield a gamut of DNA elements that range from those tethering predominantly PRC1 or PRC2 to ones capable of tethering both complexes. The emerging picture is similar to the paradigmatic targeting of Polycomb complexes by Polycomb Response Elements (PREs) of Drosophila but providing for greater plasticity.


Asunto(s)
ADN , Complejo Represivo Polycomb 1 , Animales , Humanos , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , ADN/genética , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Cromatina , Drosophila/genética
2.
J Biol Chem ; 299(9): 105080, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37499944

RESUMEN

Epigenetic repression often involves covalent histone modifications. Yet, how the presence of a histone mark translates into changes in chromatin structure that ultimately benefits the repression is largely unclear. Polycomb group proteins comprise a family of evolutionarily conserved epigenetic repressors. They act as multi-subunit complexes one of which tri-methylates histone H3 at Lysine 27 (H3K27). Here we describe a novel Monte Carlo-Molecular Dynamics simulation framework, which we employed to discover that stochastic interaction of Polycomb Repressive Complex 1 (PRC1) with tri-methylated H3K27 is sufficient to fold the methylated chromatin. Unexpectedly, such chromatin folding leads to spatial clustering of the DNA elements bound by PRC1. Our results provide further insight into mechanisms of epigenetic repression and the process of chromatin folding in response to histone methylation.


Asunto(s)
Cromatina , Proteínas de Drosophila , Histonas , Proteínas del Grupo Polycomb , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Histonas/química , Histonas/metabolismo , Metilación , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Pliegue de Proteína , Simulación de Dinámica Molecular , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Animales
3.
EMBO Rep ; 20(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30833342

RESUMEN

Polycomb repression is critical for metazoan development. Equally important but less studied is the Trithorax system, which safeguards Polycomb target genes from the repression in cells where they have to remain active. It was proposed that the Trithorax system acts via methylation of histone H3 at lysine 4 and lysine 36 (H3K36), thereby inhibiting histone methyltransferase activity of the Polycomb complexes. Here we test this hypothesis by asking whether the Trithorax group protein Ash1 requires H3K36 methylation to counteract Polycomb repression. We show that Ash1 is the only Drosophila H3K36-specific methyltransferase necessary to prevent excessive Polycomb repression of homeotic genes. Unexpectedly, our experiments reveal no correlation between the extent of H3K36 methylation and the resistance to Polycomb repression. Furthermore, we find that complete substitution of the zygotic histone H3 with a variant in which lysine 36 is replaced by arginine does not cause excessive repression of homeotic genes. Our results suggest that the model, where the Trithorax group proteins methylate histone H3 to inhibit the histone methyltransferase activity of the Polycomb complexes, needs revision.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Regulación de la Expresión Génica , Sitios Genéticos , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Mutación con Pérdida de Función , Metilación , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Factores de Transcripción/química , Factores de Transcripción/genética
4.
J Biol Chem ; 293(37): 14342-14358, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-30068546

RESUMEN

Polycomb group proteins are essential epigenetic repressors. They form multiple protein complexes of which two kinds, PRC1 and PRC2, are indispensable for repression. Although much is known about their biochemical properties, how mammalian PRC1 and PRC2 are targeted to specific genes is poorly understood. Here, we establish the cyclin D2 (CCND2) oncogene as a simple model to address this question. We provide the evidence that the targeting of PRC1 to CCND2 involves a dedicated PRC1-targeting element (PTE). The PTE appears to act in concert with an adjacent cytosine-phosphate-guanine (CpG) island to arrange for the robust binding of PRC1 and PRC2 to repressed CCND2 Our findings pave the way to identify sequence-specific DNA-binding proteins implicated in the targeting of mammalian PRC1 complexes and provide novel link between polycomb repression and cancer.


Asunto(s)
Ciclina D2/genética , Ciclina D2/metabolismo , Oncogenes , Proteínas del Grupo Polycomb/metabolismo , Animales , Sitios de Unión , Silenciador del Gen , Humanos , Ratones , Unión Proteica , Transcripción Genética
5.
Nat Rev Genet ; 14(12): 853-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24217316

RESUMEN

Polycomb group (PcG) proteins are epigenetic repressors that are essential for the transcriptional control of cell differentiation and development. PcG-mediated repression is associated with specific post-translational histone modifications and is thought to involve both biochemical and physical modulation of chromatin structure. Recent advances show that PcG complexes comprise a multiplicity of variants and are far more biochemically diverse than previously thought. The importance of these new PcG complexes for normal development and disease, their targeting mechanisms and their shifting roles in the course of differentiation are now the subject of investigation and the focus of this Review.


Asunto(s)
Regulación de la Expresión Génica , Proteínas del Grupo Polycomb/fisiología , Animales , Histonas/metabolismo , Humanos , Metilación , Procesamiento Proteico-Postraduccional , Secuencias Reguladoras de Ácidos Nucleicos , Transcripción Genética
6.
Genome Res ; 25(8): 1170-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25986499

RESUMEN

Polycomb group (PcG) complexes PRC1 and PRC2 are well known for silencing specific developmental genes. PRC2 is a methyltransferase targeting histone H3K27 and producing H3K27me3, essential for stable silencing. Less well known but quantitatively much more important is the genome-wide role of PRC2 that dimethylates ∼70% of total H3K27. We show that H3K27me2 occurs in inverse proportion to transcriptional activity in most non-PcG target genes and intergenic regions and is governed by opposing roaming activities of PRC2 and complexes containing the H3K27 demethylase UTX. Surprisingly, loss of H3K27me2 results in global transcriptional derepression proportionally greatest in silent or weakly transcribed intergenic and genic regions and accompanied by an increase of H3K27ac and H3K4me1. H3K27me2 therefore sets a threshold that prevents random, unscheduled transcription all over the genome and even limits the activity of highly transcribed genes. PRC1-type complexes also have global roles. Unexpectedly, we find a pervasive distribution of histone H2A ubiquitylated at lysine 118 (H2AK118ub) outside of canonical PcG target regions, dependent on the RING/Sce subunit of PRC1-type complexes. We show, however, that H2AK118ub does not mediate the global PRC2 activity or the global repression and is predominantly produced by a new complex involving L(3)73Ah, a homolog of mammalian PCGF3.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Complejo Represivo Polycomb 2/metabolismo , Transcripción Genética , Animales , Drosophila melanogaster/metabolismo , Silenciador del Gen , Genoma , Histonas/metabolismo , Metilación
7.
Nucleic Acids Res ; 44(21): 10132-10149, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27557709

RESUMEN

Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.


Asunto(s)
Proteínas de Drosophila/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Elementos de Respuesta , Animales , Animales Modificados Genéticamente , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Genoma de los Insectos , N-Metiltransferasa de Histona-Lisina/genética , Histonas/genética , Lisina/metabolismo , Metilación , Proteínas Asociadas a Microtúbulos , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Ubiquitinación
8.
Nature ; 471(7339): 480-5, 2011 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-21179089

RESUMEN

Chromatin is composed of DNA and a variety of modified histones and non-histone proteins, which have an impact on cell differentiation, gene regulation and other key cellular processes. Here we present a genome-wide chromatin landscape for Drosophila melanogaster based on eighteen histone modifications, summarized by nine prevalent combinatorial patterns. Integrative analysis with other data (non-histone chromatin proteins, DNase I hypersensitivity, GRO-Seq reads produced by engaged polymerase, short/long RNA products) reveals discrete characteristics of chromosomes, genes, regulatory elements and other functional domains. We find that active genes display distinct chromatin signatures that are correlated with disparate gene lengths, exon patterns, regulatory functions and genomic contexts. We also demonstrate a diversity of signatures among Polycomb targets that include a subset with paused polymerase. This systematic profiling and integrative analysis of chromatin signatures provides insights into how genomic elements are regulated, and will serve as a resource for future experimental investigations of genome structure and function.


Asunto(s)
Cromatina/genética , Cromatina/metabolismo , Drosophila melanogaster/genética , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/metabolismo , Desoxirribonucleasa I/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/crecimiento & desarrollo , Exones/genética , Regulación de la Expresión Génica/genética , Genes de Insecto/genética , Genoma de los Insectos/genética , Histonas/química , Histonas/metabolismo , Masculino , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 1 , ARN/análisis , ARN/genética , Análisis de Secuencia , Transcripción Genética/genética
9.
PLoS Genet ; 10(7): e1004495, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25010632

RESUMEN

Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies.


Asunto(s)
Diferenciación Celular/genética , Complejo Represivo Polycomb 1/genética , Proteínas del Grupo Polycomb/genética , Elementos de Respuesta/genética , Animales , Cromatina/genética , Proteínas de Unión al ADN/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Humanos , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Factor de Transcripción YY1/genética , Factor de Transcripción YY1/metabolismo
10.
Genome Res ; 22(11): 2188-98, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22767387

RESUMEN

Chromatin insulator elements and associated proteins have been proposed to partition eukaryotic genomes into sets of independently regulated domains. Here we test this hypothesis by quantitative genome-wide analysis of insulator protein binding to Drosophila chromatin. We find distinct combinatorial binding of insulator proteins to different classes of sites and uncover a novel type of insulator element that binds CP190 but not any other known insulator proteins. Functional characterization of different classes of binding sites indicates that only a small fraction act as robust insulators in standard enhancer-blocking assays. We show that insulators restrict the spreading of the H3K27me3 mark but only at a small number of Polycomb target regions and only to prevent repressive histone methylation within adjacent genes that are already transcriptionally inactive. RNAi knockdown of insulator proteins in cultured cells does not lead to major alterations in genome expression. Taken together, these observations argue against the concept of a genome partitioned by specialized boundary elements and suggest that insulators are reserved for specific regulation of selected genes.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Genoma de los Insectos , Elementos Aisladores , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Animales , Sitios de Unión , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Epigénesis Genética , Histonas/metabolismo , Metilación , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas del Grupo Polycomb/metabolismo , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño , Transcripción Genética
11.
Curr Opin Cell Biol ; 20(3): 266-73, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18439810

RESUMEN

Important advances in the study of Polycomb Group (PcG) complexes in the past two years have focused on the role of this repressive system in programing the genome. Genome-wide analyses have shown that PcG mechanisms control a large number of genes regulating many cellular functions and all developmental pathways. Current evidence shows that, contrary to the classical picture of their role, PcG complexes do not set a repressed chromatin state that is maintained throughout development but have a much more dynamic role. PcG target genes can become repressed or be reactivated or exist in intermediate states. What controls the balance between repression and derepression is a crucial question in understanding development and differentiation in higher organisms.


Asunto(s)
Epigénesis Genética/genética , Regulación de la Expresión Génica/genética , Elementos Reguladores de la Transcripción/genética , Proteínas Represoras/genética , Animales , Metilación de ADN , Evolución Molecular , Humanos , Sustancias Macromoleculares/metabolismo , Filogenia , Proteínas del Grupo Polycomb , Interferencia de ARN/fisiología , Especificidad de la Especie
12.
PLoS Genet ; 8(4): e1002646, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570616

RESUMEN

The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only ∼2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.


Asunto(s)
Cromatina , Compensación de Dosificación (Genética) , Proteínas de Drosophila , Drosophila melanogaster/genética , Histonas , Proteínas Nucleares , Factores de Transcripción , Acetilación , Animales , Composición de Base , Sitios de Unión/genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Genes Ligados a X , Histonas/genética , Histonas/metabolismo , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleosomas/genética , Motivos de Nucleótidos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Interferencia de ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética , Cromosoma X/genética
13.
PLoS Genet ; 8(9): e1002954, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028361

RESUMEN

Chromatin environments differ greatly within a eukaryotic genome, depending on expression state, chromosomal location, and nuclear position. In genomic regions characterized by high repeat content and high gene density, chromatin structure must silence transposable elements but permit expression of embedded genes. We have investigated one such region, chromosome 4 of Drosophila melanogaster. Using chromatin-immunoprecipitation followed by microarray (ChIP-chip) analysis, we examined enrichment patterns of 20 histone modifications and 25 chromosomal proteins in S2 and BG3 cells, as well as the changes in several marks resulting from mutations in key proteins. Active genes on chromosome 4 are distinct from those in euchromatin or pericentric heterochromatin: while there is a depletion of silencing marks at the transcription start sites (TSSs), HP1a and H3K9me3, but not H3K9me2, are enriched strongly over gene bodies. Intriguingly, genes on chromosome 4 are less frequently associated with paused polymerase. However, when the chromatin is altered by depleting HP1a or POF, the RNA pol II enrichment patterns of many chromosome 4 genes shift, showing a significant decrease over gene bodies but not at TSSs, accompanied by lower expression of those genes. Chromosome 4 genes have a low incidence of TRL/GAGA factor binding sites and a low T(m) downstream of the TSS, characteristics that could contribute to a low incidence of RNA polymerase pausing. Our data also indicate that EGG and POF jointly regulate H3K9 methylation and promote HP1a binding over gene bodies, while HP1a targeting and H3K9 methylation are maintained at the repeats by an independent mechanism. The HP1a-enriched, POF-associated chromatin structure over the gene bodies may represent one type of adaptation for genes embedded in repetitive DNA.


Asunto(s)
Proteínas Cromosómicas no Histona , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina , Histonas , Animales , Animales Modificados Genéticamente , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Eucromatina/metabolismo , Regulación de la Expresión Génica/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Mutación
14.
Nat Genet ; 38(6): 700-5, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16732288

RESUMEN

Polycomb group (PcG) complexes are multiprotein assemblages that bind to chromatin and establish chromatin states leading to epigenetic silencing. PcG proteins regulate homeotic genes in flies and vertebrates, but little is known about other PcG targets and the role of the PcG in development, differentiation and disease. Here, we determined the distribution of the PcG proteins PC, E(Z) and PSC and of trimethylation of histone H3 Lys27 (me3K27) in the D. melanogaster genome. At more than 200 PcG target genes, binding sites for the three PcG proteins colocalize to presumptive Polycomb response elements (PREs). In contrast, H3 me3K27 forms broad domains including the entire transcription unit and regulatory regions. PcG targets are highly enriched in genes encoding transcription factors, but they also include genes coding for receptors, signaling proteins, morphogens and regulators representing all major developmental pathways.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genoma , Animales , Línea Celular , Inmunoprecipitación de Cromatina , Metilación de ADN , Complejo Represivo Polycomb 1 , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Genome Res ; 21(2): 147-63, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177972

RESUMEN

Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average enriched for the "silencing" marks H3K9me2, H3K9me3, HP1a, and SU(VAR)3-9, and are generally depleted for marks associated with active transcription. The locations of the euchromatin-heterochromatin borders identified by these marks are similar in animal tissues and most cell lines, although the amount of heterochromatin is variable in some cell lines. Combinatorial analysis of chromatin patterns reveals distinct profiles for euchromatin, pericentric heterochromatin, and the 4th chromosome. Both silent and active protein-coding genes in heterochromatin display complex patterns of chromosomal proteins and histone modifications; a majority of the active genes exhibit both "activation" marks (e.g., H3K4me3 and H3K36me3) and "silencing" marks (e.g., H3K9me2 and HP1a). The hallmark of active genes in heterochromatic domains appears to be a loss of H3K9 methylation at the transcription start site. We also observe complex epigenomic profiles of intergenic regions, repeated transposable element (TE) sequences, and genes in the heterochromatic extensions. An unexpectedly large fraction of sequences in the euchromatic chromosome arms exhibits a heterochromatic chromatin signature, which differs in size, position, and impact on gene expression among cell types. We conclude that patterns of heterochromatin/euchromatin packaging show greater complexity and plasticity than anticipated. This comprehensive analysis provides a foundation for future studies of gene activity and chromosomal functions that are influenced by or dependent upon heterochromatin.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Animales , Línea Celular , Elementos Transponibles de ADN/genética , Epigenómica , Eucromatina/metabolismo , Femenino , Regulación de la Expresión Génica , Silenciador del Gen , Células HeLa , Histonas/química , Humanos , Masculino , Estructura Terciaria de Proteína
16.
Sci Adv ; 10(15): eadm8167, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598632

RESUMEN

Even when split into several chromosomes, DNA molecules that make up our genome are too long to fit into the cell nuclei unless massively folded. Such folding must accommodate the need for timely access to selected parts of the genome by transcription factors, RNA polymerases, and DNA replication machinery. Here, we review our current understanding of the genome folding inside the interphase nuclei. We consider the resulting genome architecture at three scales with a particular focus on the intermediate (meso) scale and summarize the insights gained from recent experimental observations and diverse computational models.


Asunto(s)
Núcleo Celular , Cromatina , Cromatina/genética , Núcleo Celular/genética , Cromosomas/genética , ADN/genética , Genoma
17.
PLoS Genet ; 6(1): e1000805, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20062800

RESUMEN

Polycomb (PcG) regulation has been thought to produce stable long-term gene silencing. Genomic analyses in Drosophila and mammals, however, have shown that it targets many genes, which can switch state during development. Genetic evidence indicates that critical for the active state of PcG target genes are the histone methyltransferases Trithorax (TRX) and ASH1. Here we analyze the repertoire of alternative states in which PcG target genes are found in different Drosophila cell lines and the role of PcG proteins TRX and ASH1 in controlling these states. Using extensive genome-wide chromatin immunoprecipitation analysis, RNAi knockdowns, and quantitative RT-PCR, we show that, in addition to the known repressed state, PcG targets can reside in a transcriptionally active state characterized by formation of an extended domain enriched in ASH1, the N-terminal, but not C-terminal moiety of TRX and H3K27ac. ASH1/TRX N-ter domains and transcription are not incompatible with repressive marks, sometimes resulting in a "balanced" state modulated by both repressors and activators. Often however, loss of PcG repression results instead in a "void" state, lacking transcription, H3K27ac, or binding of TRX or ASH1. We conclude that PcG repression is dynamic, not static, and that the propensity of a target gene to switch states depends on relative levels of PcG, TRX, and activators. N-ter TRX plays a remarkable role that antagonizes PcG repression and preempts H3K27 methylation by acetylation. This role is distinct from that usually attributed to TRX/MLL proteins at the promoter. These results have important implications for Polycomb gene regulation, the "bivalent" chromatin state of embryonic stem cells, and gene expression in development.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Epigénesis Genética , Acetilación , Animales , Línea Celular , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Complejo Represivo Polycomb 1 , Unión Proteica , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37169594

RESUMEN

Transposable elements constitute a substantial portion of most eukaryotic genomes and their activity can lead to developmental and neuronal defects. In the germline, transposon activity is antagonized by the PIWI-interacting RNA pathway tasked with repression of transposon transcription and degrading transcripts that have already been produced. However, most of the genes required for transposon control are not expressed outside the germline, prompting the question: what causes deleterious transposons activity in the soma and how is it managed? Here, we show that disruptions of the Histone 3 lysine 36 methylation machinery led to increased transposon transcription in Drosophila melanogaster brains and that there is division of labour for the repression of transposable elements between the different methyltransferases Set2, NSD, and Ash1. Furthermore, we show that disruption of methylation leads to somatic activation of key genes in the PIWI-interacting RNA pathway and the preferential production of RNA from dual-strand piRNA clusters.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Transponibles de ADN/genética , Metilación , Lisina/genética , Lisina/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo
19.
Sci Adv ; 9(51): eadj8198, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38134278

RESUMEN

Animals use the Polycomb system to epigenetically repress developmental genes. The repression requires trimethylation of lysine 27 of histone H3 (H3K27me3) by Polycomb Repressive Complex 2 (PRC2), but the dynamics of this process is poorly understood. To bridge the gap, we developed a computational model that forecasts H3K27 methylation in Drosophila with high temporal resolution and spatial accuracy of contemporary experimental techniques. Using this model, we show that pools of methylated H3K27 in dividing cells are defined by the effective concentration of PRC2 and the replication frequency. We find that the allosteric stimulation by preexisting H3K27me3 makes PRC2 better in methylating developmental genes as opposed to indiscriminate methylation throughout the genome. Applied to Drosophila development, our model argues that, in this organism, the intergenerationally inherited H3K27me3 does not "survive" rapid cycles of embryonic chromatin replication and is unlikely to transmit the memory of epigenetic repression to the offspring. Our model is adaptable to other organisms, including mice and humans.


Asunto(s)
Proteínas de Drosophila , Histonas , Humanos , Animales , Ratones , Histonas/genética , Histonas/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Cromatina/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Drosophila/genética , Metilación
20.
Sci Adv ; 9(5): eade0090, 2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36735780

RESUMEN

Drosophila insulators were the first DNA elements found to regulate gene expression by delimiting chromatin contacts. We still do not know how many of them exist and what impact they have on the Drosophila genome folding. Contrary to vertebrates, there is no evidence that fly insulators block cohesin-mediated chromatin loop extrusion. Therefore, their mechanism of action remains uncertain. To bridge these gaps, we mapped chromatin contacts in Drosophila cells lacking the key insulator proteins CTCF and Cp190. With this approach, we found hundreds of insulator elements. Their study indicates that Drosophila insulators play a minor role in the overall genome folding but affect chromatin contacts locally at many loci. Our observations argue that Cp190 promotes cobinding of other insulator proteins and that the model, where Drosophila insulators block chromatin contacts by forming loops, needs revision. Our insulator catalog provides an important resource to study mechanisms of genome folding.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos Aisladores/genética , Proteínas Nucleares/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA