RESUMEN
Anxiety disorders (AD) are associated with altered connectivity in large-scale intrinsic brain networks. It remains uncertain how much these signatures overlap across different phenotypes due to a lack of well-powered cross-disorder comparisons. We used resting-state functional magnetic resonance imaging (rsfMRI) to investigate differences in functional connectivity (FC) in a cross-disorder sample of AD patients and healthy controls (HC). Before treatment, 439 patients from two German multicenter clinical trials at eight different sites fulfilling a primary diagnosis of panic disorder and/or agoraphobia (PD/AG, N = 154), social anxiety disorder (SAD, N = 95), or specific phobia (SP, N = 190) and 105 HC underwent an 8 min rsfMRI assessment. We performed categorical and dimensional regions of interest (ROI)-to-ROI analyses focusing on connectivity between regions of the defensive system and prefrontal regulation areas. AD patients showed increased connectivity between the insula and the thalamus compared to controls. This was mainly driven by PD/AG patients who showed increased (insula/hippocampus/amygdala-thalamus) and decreased (dorsomedial prefrontal cortex/periaqueductal gray-anterior cingulate cortex) positive connectivity between subcortical and cortical areas. In contrast, SAD patients showed decreased negative connectivity exclusively in cortical areas (insula-orbitofrontal cortex), whereas no differences were found in SP patients. State anxiety associated with the scanner environment did not explain the FC between these regions. Only PD/AG patients showed pronounced connectivity changes along a widespread subcortical-cortical network, including the midbrain. Dimensional analyses yielded no significant results. The results highlighting categorical differences between ADs at a systems neuroscience level are discussed within the context of personalized neuroscience-informed treatments. PROTECT-AD's registration at NIMH Protocol Registration System: 01EE1402A and German Register of Clinical Studies: DRKS00008743. SpiderVR's registration at ClinicalTrials.gov: NCT03208400.
RESUMEN
Data-based predictions of individual Cognitive Behavioral Therapy (CBT) treatment response are a fundamental step towards precision medicine. Past studies demonstrated only moderate prediction accuracy (i.e. ability to discriminate between responders and non-responders of a given treatment) when using clinical routine data such as demographic and questionnaire data, while neuroimaging data achieved superior prediction accuracy. However, these studies may be considerably biased due to very limited sample sizes and bias-prone methodology. Adequately powered and cross-validated samples are a prerequisite to evaluate predictive performance and to identify the most promising predictors. We therefore analyzed resting state functional magnet resonance imaging (rs-fMRI) data from two large clinical trials to test whether functional neuroimaging data continues to provide good prediction accuracy in much larger samples. Data came from two distinct German multicenter studies on exposure-based CBT for anxiety disorders, the Protect-AD and SpiderVR studies. We separately and independently preprocessed baseline rs-fMRI data from n = 220 patients (Protect-AD) and n = 190 patients (SpiderVR) and extracted a variety of features, including ROI-to-ROI and edge-functional connectivity, sliding-windows, and graph measures. Including these features in sophisticated machine learning pipelines, we found that predictions of individual outcomes never significantly differed from chance level, even when conducting a range of exploratory post-hoc analyses. Moreover, resting state data never provided prediction accuracy beyond the sociodemographic and clinical data. The analyses were independent of each other in terms of selecting methods to process resting state data for prediction input as well as in the used parameters of the machine learning pipelines, corroborating the external validity of the results. These similar findings in two independent studies, analyzed separately, urge caution regarding the interpretation of promising prediction results based on neuroimaging data from small samples and emphasizes that some of the prediction accuracies from previous studies may result from overestimation due to homogeneous data and weak cross-validation schemes. The promise of resting-state neuroimaging data to play an important role in the prediction of CBT treatment outcomes in patients with anxiety disorders remains yet to be delivered.
Asunto(s)
Trastornos de Ansiedad , Terapia Cognitivo-Conductual , Aprendizaje Automático , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Femenino , Masculino , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/diagnóstico por imagen , Trastornos de Ansiedad/fisiopatología , Adulto , Terapia Cognitivo-Conductual/métodos , Persona de Mediana Edad , Resultado del Tratamiento , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Terapia Implosiva/métodosRESUMEN
Although highly effective on average, exposure-based treatments do not work equally well for all patients with anxiety disorders. The identification of pre-treatment response-predicting patient characteristics may enable patient stratification. Preliminary research highlights the relevance of inhibitory fronto-limbic networks as such. We aimed to identify pre-treatment neural signatures differing between exposure treatment responders and non-responders in spider phobia and to validate results through rigorous replication. Data of a bi-centric intervention study comprised clinical phenotyping and pre-treatment resting-state functional connectivity (rsFC) data of n = 79 patients with spider phobia (discovery sample) and n = 69 patients (replication sample). RsFC data analyses were accomplished using the Matlab-based CONN-toolbox with harmonized analyses protocols at both sites. Treatment response was defined by a reduction of >30% symptom severity from pre- to post-treatment (Spider Phobia Questionnaire Score, primary outcome). Secondary outcome was defined by a reduction of >50% in a Behavioral Avoidance Test (BAT). Mean within-session fear reduction functioned as a process measure for exposure. Compared to non-responders and pre-treatment, results in the discovery sample seemed to indicate that responders exhibited stronger negative connectivity between frontal and limbic structures and were characterized by heightened connectivity between the amygdala and ventral visual pathway regions. Patients exhibiting high within-session fear reduction showed stronger excitatory connectivity within the prefrontal cortex than patients with low within-session fear reduction. Whereas these results could be replicated by another team using the same data (cross-team replication), cross-site replication of the discovery sample findings in the independent replication sample was unsuccessful. Results seem to support negative fronto-limbic connectivity as promising ingredient to enhance response rates in specific phobia but lack sufficient replication. Further research is needed to obtain a valid basis for clinical decision-making and the development of individually tailored treatment options. Notably, future studies should regularly include replication approaches in their protocols.
Asunto(s)
Trastornos Fóbicos , Arañas , Animales , Humanos , Imagen por Resonancia Magnética , Trastornos Fóbicos/diagnóstico por imagen , Trastornos Fóbicos/terapia , Trastornos de Ansiedad , Miedo/fisiologíaRESUMEN
The functional neuropeptide S receptor 1 (NPSR1) gene A/T variant (rs324981) is associated with fear processing. We investigated the impact of NPSR1 genotype on fear processing and on symptom reduction following treatment in individuals with spider phobia. A replication approach was applied [discovery sample: Münster (MS) nMS = 104; replication sample Würzburg (WZ) nWZ = 81]. Participants were genotyped for NPSR1 rs324981 [T-allele carriers (risk) versus AA homozygotes (no-risk)]. A sustained and phasic fear paradigm was applied during functional magnetic resonance imaging. A one-session virtual reality exposure treatment was conducted. Change of symptom severity from pre to post treatment and within session fear reduction were assessed. T-allele carriers in the discovery sample displayed lower anterior cingulate cortex (ACC) activation compared to AA homozygotes independent of condition. For sustained fear, this effect was replicated within a small cluster and medium effect size. No association with symptom reduction was found. Within-session fear reduction was negatively associated with ACC activation in T-allele carriers in the discovery sample. NPSR1 rs324981 genotype might be associated with fear processing in the ACC in spider phobia. Interpretation as potential risk-increasing function of the NPSR1 rs324981 T-allele via impaired top-down control of limbic structures remains speculative. Potential association with symptom reduction warrants further research.
Asunto(s)
Miedo , Imagen por Resonancia Magnética , Trastornos Fóbicos , Receptores Acoplados a Proteínas G , Humanos , Trastornos Fóbicos/genética , Trastornos Fóbicos/fisiopatología , Femenino , Miedo/fisiología , Miedo/psicología , Imagen por Resonancia Magnética/métodos , Adulto , Receptores Acoplados a Proteínas G/genética , Masculino , Adulto Joven , Arañas/genética , Animales , Genotipo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Persona de Mediana Edad , Polimorfismo de Nucleótido SimpleRESUMEN
Although virtual-reality exposure treatment (VRET) for anxiety disorders is an efficient treatment option for specific phobia, mechanisms of action for immediate and sustained treatment response need to be elucidated. Towards this aim, core therapy process variables were assessed as predictors for short- and long-term VR treatment outcomes. In a bi-centric study, n = 186 patients with spider phobia completed a baseline-assessment, a one-session VRET, a post-therapy assessment, and a 6-month-follow-up assessment (ClinicalTrials.gov, ID: NCT03208400). Short- and long-term outcomes regarding self-reported symptoms in the spider phobia questionnaire (SPQ) and final patient-spider distance in the behavioral avoidance test (BAT) were predicted via logistic regression models with the corresponding baseline score, age, initial fear activation, within-session fear reduction and fear expectancy violation as predictors. To predict long-term remission status at 6-month-follow-up, dimensional short-term changes in the SPQ and BAT were additionally included. Higher within-session fear reductions predicted better treatment outcomes (long-term SPQ; short- and long-term BAT). Lower initial fear activation tended to be associated with better long-term outcomes (SPQ), while fear expectancy violation was not associated with any outcome measure. Short-term change in the SPQ predicted remission status. Findings highlight that in VRET for spider phobia, the experience of fear reduction is central for short- and long-term treatment success and should be focused by therapists.
Asunto(s)
Trastornos Fóbicos , Arañas , Terapia de Exposición Mediante Realidad Virtual , Animales , Humanos , Trastornos de Ansiedad , Miedo , Trastornos Fóbicos/terapia , Resultado del Tratamiento , Terapia de Exposición Mediante Realidad Virtual/métodosRESUMEN
BACKGROUND: Models of anxiety disorders and the rationale of exposure therapy (ET) are grounded on classical fear conditioning. Yet, it is unclear whether lower fear ratings of conditioned safety versus threat cues and corresponding neural markers of safety-learning and/or fear inhibition assessed before treatment would predict better outcomes of behavioral exposure. METHODS: Sixty-six patients with spider phobia completed pre-treatment clinical and experimental fear conditioning assessments, one session of virtual reality ET, a post-treatment clinical assessment, and a 6-month follow-up assessment. Tilted Gabor gratings served as conditioned stimuli (CS) that were either paired (CS+) or remained unpaired (CS-) with an aversive phobia-related and phobia-unrelated unconditioned stimulus (UCS). CS+/CS- differences in fear ratings and magnetoencephalographic event-related fields (ERFs) were related to percentual symptom reductions from pre- to post-treatment, as assessed via spider phobia questionnaire (SPQ), behavioral avoidance test (BAT), and remission status at 6-month follow-up. RESULTS: We observed no associations between pre-treatment CS+/CS- differences in fear ratings and any treatment outcome. CS+/CS- differences in source estimations of ERFs revealed that higher CS- activity in bilateral dorsolateral prefrontal cortex (dlPFC) was related with SPQ- and BAT-reductions. Associations between CS+/CS- differences and treatment outcomes were also observed in left ventromedial prefrontal cortex (vmPFC) regions, which additionally revealed associations with the follow-up remission status. CONCLUSIONS: Results provide initial evidence that neural pre-treatment CS+/CS- differences may hold predictive information regarding outcomes of behavioral exposure. Our findings highlight a key role of neural responses to safety cues with potentially inhibitory effects on affect-generating structures during fear conditioning.
Asunto(s)
Trastornos Fóbicos , Arañas , Animales , Miedo/fisiología , Magnetoencefalografía , Trastornos Fóbicos/terapia , Resultado del TratamientoRESUMEN
BACKGROUND: Because overgeneralization of fear is a pathogenic marker of anxiety disorders, we investigated whether pretreatment levels of fear generalization in spider-phobic patients are related to their response to exposure-based treatment to identify pretreatment moderators of treatment success. METHODS: A total of 90 patients with spider phobia completed pretreatment clinical and magnetoencephalography assessments, one session of virtual reality exposure therapy, and a posttreatment clinical assessment. Based on the primary outcome (30% symptom reduction in self-reported symptoms), they were categorized as responders or nonresponders. In a pretreatment magnetoencephalography fear generalization paradigm involving fear conditioning with 2 unconditioned stimuli (UCS), we obtained fear ratings, UCS expectancy ratings, and event-related fields to conditioned stimuli (CS: CS-, CS+) and 7 different generalization stimuli on a perceptual continuum from CS- to CS+. RESULTS: Before treatment, nonresponders showed behavioral overgeneralization indicated by more linear generalization gradients in fear ratings. Analyses of magnetoencephalography source estimations revealed that nonresponders showed a decline of their (inhibitory) frontal activations to safety-signaling CS- and generalization stimuli compared with CS+ over time, while responders maintained these activations at early (<300 ms) and late processing stages. CONCLUSIONS: Results provide initial evidence that pretreatment differences of behavioral and neural markers of fear generalization may act as moderators of later responses to behavioral exposure. Stimulating further research on fear generalization as a potential predictive marker, our findings are an important first step in the attempt to identify patients who may not benefit from exposure therapy and to personalize and optimize treatment strategies for this vulnerable patient group.
Asunto(s)
Trastornos Fóbicos , Arañas , Terapia de Exposición Mediante Realidad Virtual , Animales , Miedo/fisiología , Humanos , Magnetoencefalografía , Trastornos Fóbicos/terapiaRESUMEN
While being highly effective on average, exposure-based treatments are not equally effective in all patients. The a priori identification of patients with a poor prognosis may enable the application of more personalized psychotherapeutic interventions. We aimed at identifying sociodemographic and clinical pre-treatment predictors for treatment response in spider phobia (SP). N = 174 patients with SP underwent a highly standardized virtual reality exposure therapy (VRET) at two independent sites. Analyses on group-level were used to test the efficacy. We applied a state-of-the-art machine learning protocol (Random Forests) to evaluate the predictive utility of clinical and sociodemographic predictors for a priori identification of individual treatment response assessed directly after treatment and at 6-month follow-up. The reliability and generalizability of predictive models was tested via external cross-validation. Our study shows that one session of VRET is highly effective on a group-level and is among the first to reveal long-term stability of this treatment effect. Individual short-term symptom reductions could be predicted above chance, but accuracies dropped to non-significance in our between-site prediction and for predictions of long-term outcomes. With performance metrics hardly exceeding chance level and the lack of generalizability in the employed between-site replication approach, our study suggests limited clinical utility of clinical and sociodemographic predictors. Predictive models including multimodal predictors may be more promising.
Asunto(s)
Terapia Implosiva , Trastornos Fóbicos , Arañas , Animales , Humanos , Aprendizaje Automático , Trastornos Fóbicos/terapia , Reproducibilidad de los ResultadosRESUMEN
OBJECTIVES: Embedded in the Collaborative Research Center "Fear, Anxiety, Anxiety Disorders" (CRC-TRR58), this bicentric clinical study aims at identifying biobehavioral markers of treatment (non-)response by applying machine learning methodology with an external cross-validation protocol. We hypothesize that a priori prediction of treatment (non-)response is possible in a second, independent sample based on multimodal markers. METHODS: One-session virtual reality exposure treatment (VRET) with patients with spider phobia was conducted on two sites. Clinical, neuroimaging, and genetic data were assessed at baseline, post-treatment and after 6 months. The primary and secondary outcomes defining treatment response are as follows: 30% reduction regarding the individual score in the Spider Phobia Questionnaire and 50% reduction regarding the individual distance in the behavioral avoidance test. RESULTS: N = 204 patients have been included (n = 100 in Würzburg, n = 104 in Münster). Sample characteristics for both sites are comparable. DISCUSSION: This study will offer cross-validated theranostic markers for predicting the individual success of exposure-based therapy. Findings will support clinical decision-making on personalized therapy, bridge the gap between basic and clinical research, and bring stratified therapy into reach. The study is registered at ClinicalTrials.gov (ID: NCT03208400).