Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Audiol Neurootol ; 26(2): 95-101, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33238272

RESUMEN

INTRODUCTION: The preservation of residual hearing has become an important consideration in cochlear implant (CI) recipients in recent years. It was the aim of the present animal experimental study to investigate the influence of a pretreatment with near-infrared (NIR) light on preservation of sensory hair cells and residual hearing after cochlear implantation. METHODS: NIR was applied unilaterally (15 min, 808 nm, 120 mW) to 8 guinea pigs, immediately before a bilateral scala tympani CI electrode insertion was performed. The nonirradiated (contralateral) side served as control. Twenty-eight days postoperatively, auditory brainstem responses (ABRs) were registered from both ears to screen for hearing loss. Thereafter, the animals were sacrificed and inner hair cells (IHCs) and outer hair cells (OHCs) were counted and compared between NIR-pretreated and control (contralateral) cochleae. RESULTS: There was no IHC loss upon cochlear implantation. OHC loss was most prominent on both sides at the apical part of the cochlea. NIR pretreatment led to a statistically significant reduction in OHC loss (by 39.8%). ABR recordings (across the frequencies 4-32 kHz) showed a statistically significant difference between the 2 groups and corresponds well with the apical structural damage. Hearing loss was reduced by about 20 dB on average for the NIR-pretreated group (p ≤ 0.05). DISCUSSION/CONCLUSION: A single NIR pretreatment in this animal model of CI surgery appears to be neuroprotective for residual hearing. This is in line with other studies where several NIR posttreatments have protected cochlear and other neural tissues. NIR pretreatment is an inexpensive, effective, and noninvasive approach that can complement other ways of preserving residual hearing and, hence, should deserve further clinical evaluation in CI patients.


Asunto(s)
Cóclea/cirugía , Implantación Coclear/métodos , Implantes Cocleares , Audición/fisiología , Rayos Infrarrojos , Neuroprotección/fisiología , Rampa Timpánica/cirugía , Animales , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Cobayas , Células Ciliadas Auditivas Internas/fisiología , Humanos , Masculino
2.
Cochlear Implants Int ; 24(5): 250-259, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37127529

RESUMEN

Objective: Upper current limits (C-levels) are sometimes extremely increased over time since this procedure can enhance speech perception. It should be clarified if a larger amount of electrical stimulation is tolerated by the remaining peripheral and central auditory pathway.Materials and Methods: An animal electrode array was inserted in mechanically deafened guinea pigs. C-levels were adjusted to a mean of approximately 10 CL ('LOS' group), 40 CL ('MOS' group) or 60 CL ('HOS' group) above the electrode specific electrically evoked compound action potential (eCAP) threshold. The stimulation was performed via a sound processor in standardized auditory environment. Implanted and not stimulated animals served as controls.Results: A significant eCAP threshold shift was observed in the 'HOS'-group aftereight hours of stimulation at basal electrodes. Electrically evoked auditory brainstem thresholds were stable over time in all stimulation groups. The ratio between eCAP- and eABR threshold shifts was significantly enhanced in the 'HOS'- group.Conclusion: Even short-time overstimulation reduces the excitability of peripheral but not central auditory structures. The changed relationship between the excitability of spiral ganglion neurons and inferior colliculus neurons seems to indicate an overstimulation. The results are of utmost importance for a safe CI-processor fitting especially in children or non-compliant patients.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Animales , Cobayas , Umbral Auditivo/fisiología , Implantación Coclear/métodos , Nervio Coclear , Estimulación Eléctrica , Potenciales Evocados Auditivos/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Modelos Animales
3.
Noise Health ; 24(112): 1-6, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645133

RESUMEN

Context: Cytomegalovirus (CMV) represents the leading congenital viral infection in humans. Although congenital CMV due to vertically transmitted infections is the main cause of CMV-related diseases, adult CMV infections might still be of clinical significance. It is still discussed how far CMV seropositivity, due to horizontal infection in immunocompetent adults, is able to induce significant dysfunction. The present study investigates in how far CMV seropositivity is an additional risk factor for an increasing susceptibility to sensorineural hearing loss induced by acoustic injury during adulthood in a guinea pig CMV (GPCMV) model of noise-induced hearing loss (NIHL). Methods: Two groups (GPCMV seropositive vs. seronegative) of normal hearing adult guinea pigs were exposed to a broadband noise (5-20 kHz) for 2 hours at 115 dB sound pressure level. Frequency-specific auditory brainstem response recordings for determination of auditory threshold shift were carried out and the number of missing outer hair cells was counted 2 weeks after the noise exposure. Results: The data show a slightly increased shift in auditory thresholds in seropositive animals compared to the seronegative control group in response to noise trauma. However, the observed difference was significant at least at high frequencies. The differences in threshold shift are not correlated with outer hair cell loss between the experimental groups. Conclusion: The results point to potential additional pathologies in a guinea pig NIHL model in correlation to GPCMV seropositivity, which should be taken into account when assessing risks of latent/reactivated CMV infection. Due to the relatively slight effect in the present data, the aim of future studies should be a more detailed consideration (e.g., larger sample size) and to localize possible target structures as well as the significance of the infection route.


Asunto(s)
Infecciones por Citomegalovirus , Pérdida Auditiva Provocada por Ruido , Animales , Citomegalovirus , Infecciones por Citomegalovirus/complicaciones , Cobayas , Ruido/efectos adversos , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA