Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(12): e54, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38808669

RESUMEN

Chromatin three-dimensional (3D) organization inside the cell nucleus determines the separation of euchromatin and heterochromatin domains. Their segregation results in the definition of active and inactive chromatin compartments, whereby the local concentration of associated proteins, RNA and DNA results in the formation of distinct subnuclear structures. Thus, chromatin domains spatially confined in a specific 3D nuclear compartment are expected to share similar epigenetic features and biochemical properties, in terms of accessibility and solubility. Based on this rationale, we developed the 4f-SAMMY-seq to map euchromatin and heterochromatin based on their accessibility and solubility, starting from as little as 10 000 cells. Adopting a tailored bioinformatic data analysis approach we reconstruct also their 3D segregation in active and inactive chromatin compartments and sub-compartments, thus recapitulating the characteristic properties of distinct chromatin states. A key novelty of the new method is the capability to map both the linear segmentation of open and closed chromatin domains, as well as their compartmentalization in one single experiment.


Asunto(s)
Eucromatina , Heterocromatina , Heterocromatina/química , Heterocromatina/metabolismo , Eucromatina/química , Eucromatina/metabolismo , Eucromatina/genética , Humanos , Cromatina/química , Cromatina/metabolismo , Cromatina/genética , Núcleo Celular/genética , Núcleo Celular/química , Núcleo Celular/metabolismo , ADN/química , ADN/metabolismo , Animales
2.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537238

RESUMEN

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Asunto(s)
Empalme Alternativo , Cadherinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , ARN/metabolismo , Cadherinas/genética , Humanos , Células Madre Pluripotentes Inducidas , Células-Madre Neurales , Trastorno del Espectro Autista/genética
3.
Br J Cancer ; 129(3): 455-465, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37340093

RESUMEN

BACKGROUND: Recurrent genetic lesions provide basis for risk assessment in pediatric acute lymphoblastic leukemia (ALL). However, current prognostic classifiers rely on a limited number of predefined sets of alterations. METHODS: Disease-relevant copy number aberrations (CNAs) were screened genome-wide in 260 children with B-cell precursor ALL. Results were integrated with cytogenetic data to improve risk assessment. RESULTS: CNAs were detected in 93.8% (n = 244) of the patients. First, cytogenetic profiles were combined with IKZF1 status (IKZF1normal, IKZF1del and IKZF1plus) and three prognostic subgroups were distinguished with significantly different 5-year event-free survival (EFS) rates, IKAROS-low (n = 215): 86.3%, IKAROS-medium (n = 27): 57.4% and IKAROS-high (n = 18): 37.5%. Second, contribution of genetic aberrations to the clinical outcome was assessed and an aberration-specific score was assigned to each prognostically relevant alteration. By aggregating the scores of aberrations emerging in individual patients, personalized cumulative values were calculated and used for defining four prognostic subgroups with distinct clinical outcomes. Two favorable subgroups included 60% of patients (n = 157) with a 5-year EFS of 96.3% (excellent risk, n = 105) and 87.2% (good risk, n = 52), respectively; while 40% of patients (n = 103) showed high (n = 74) or ultra-poor (n = 29) risk profile (5-year EFS: 67.4% and 39.0%, respectively). CONCLUSIONS: PersonALL, our conceptually novel prognostic classifier considers all combinations of co-segregating genetic alterations, providing a highly personalized patient stratification.


Asunto(s)
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Niño , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Pronóstico , Medición de Riesgo , Factor de Transcripción Ikaros/genética , Eliminación de Gen
4.
Bioinformatics ; 38(2): 384-390, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34499147

RESUMEN

MOTIVATION: Alternative splicing contributes to the diversity of RNA found in biological samples. Current tools investigating patterns of alternative splicing check for coordinated changes in the expression or relative ratio of RNA isoforms where specific isoforms are up- or down-regulated in a condition. However, the molecular process of splicing is stochastic and changes in RNA isoform diversity for a gene might arise between samples or conditions. A specific condition can be dominated by a single isoform, while multiple isoforms with similar expression levels can be present in a different condition. These changes might be the result of mutations, drug treatments or differences in the cellular or tissue environment. Here, we present a tool for the characterization and analysis of RNA isoform diversity using isoform level expression measurements. RESULTS: We developed an R package called SplicingFactory, to calculate various RNA isoform diversity metrics, and compare them across conditions. Using the package, we tested the effect of RNA-seq quantification tools, quantification uncertainty, gene expression levels and isoform numbers on the isoform diversity calculation. We analyzed a set of CD34+ hematopoietic stem cells and myelodysplastic syndrome samples and found a set of genes whose isoform diversity change is associated with SF3B1 mutations. AVAILABILITY AND IMPLEMENTATION: The SplicingFactory package is freely available under the GPL-3.0 license from Bioconductor for the Windows, MacOS and Linux operating systems (https://www.bioconductor.org/packages/release/bioc/html/SplicingFactory.html). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Empalme del ARN , Transcriptoma , Análisis de Secuencia de ARN , Programas Informáticos , Isoformas de Proteínas , Isoformas de ARN
5.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36142502

RESUMEN

Metabolic characteristics of kidney cancers have mainly been obtained from the most frequent clear cell renal cell carcinoma (CCRCC) studies. Moreover, the bioenergetic perturbances that affect metabolic adaptation possibilities of papillary renal cell carcinoma (PRCC) have not yet been detailed. Therefore, our study aimed to analyze the in situ metabolic features of PRCC vs. CCRCC tissues and compared the metabolic characteristics of PRCC, CCRCC, and normal tubular epithelial cell lines. The protein and mRNA expressions of the molecular elements in mammalian target of rapamycin (mTOR) and additional metabolic pathways were analyzed in human PRCC cases compared to CCRCC. The metabolic protein expression pattern, metabolite content, mTOR, and metabolic inhibitor sensitivity of renal carcinoma cell lines were also studied and compared with tubular epithelial cells, as "normal" control. We observed higher protein expressions of the "alternative bioenergetic pathway" elements, in correlation with the possible higher glutamine and acetate consumption in PRCC cells instead of higher glycolytic and mTOR activity in CCRCCs. Increased expression of certain metabolic pathway markers correlates with the detected differences in metabolite ratios, as well. The lower lactate/pyruvate, lactate/malate, and higher pyruvate/citrate intracellular metabolite ratios in PRCC compared to CCRCC cell lines suggest that ACHN (PRCC) have lower Warburg glycolytic capacity, less pronounced pyruvate to lactate producing activity and shifted OXPHOS phenotype. However, both studied renal carcinoma cell lines showed higher mTOR activity than tubular epithelial cells cultured in vitro, the metabolite ratio, the enzyme expression profiles, and the higher mitochondrial content also suggest increased importance of mitochondrial functions, including mitochondrial OXPHOS in PRCCs. Additionally, PRCC cells showed significant mTOR inhibitor sensitivity and the used metabolic inhibitors increased the effect of rapamycin in combined treatments. Our study revealed in situ metabolic differences in mTOR and metabolic protein expression patterns of human PRCC and CCRCC tissues as well as in cell lines. These underline the importance in the development of specific new treatment strategies, new mTOR inhibitors, and other anti-metabolic drug combinations in PRCC therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/patología , Citratos , Glutamina , Humanos , Neoplasias Renales/metabolismo , Lactatos , Inhibidores mTOR , Malatos , Piruvatos , ARN Mensajero , Sirolimus/farmacología , Serina-Treonina Quinasas TOR
6.
Br J Haematol ; 194(2): 355-364, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019713

RESUMEN

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has revolutionised the therapeutic landscape of chronic lymphocytic leukaemia (CLL). Acquired mutations emerging at position C481 in the BTK tyrosine kinase domain are the predominant genetic alterations associated with secondary ibrutinib resistance. To assess the correlation between disease progression, and the emergence and temporal dynamics of the most common resistance mutation BTKC481S , sensitive (10-4 ) time-resolved screening was performed in 83 relapsed/refractory CLL patients during single-agent ibrutinib treatment. With a median follow-up time of 40 months, BTKC481S was detected in 48·2% (40/83) of the patients, with 80·0% (32/40) of them showing disease progression during the examined period. In these 32 cases, representing 72·7% (32/44) of all patients experiencing relapse, emergence of the BTKC481S mutation preceded the symptoms of clinical relapse with a median of nine months. Subsequent Bcl-2 inhibition therapy applied in 28/32 patients harbouring BTKC481S and progressing on ibrutinib conferred clinical and molecular remission across the patients. Our study demonstrates the clinical value of sensitive BTKC481S monitoring with the largest longitudinally analysed real-world patient cohort reported to date and validates the feasibility of an early prediction of relapse in the majority of ibrutinib-treated relapsed/refractory CLL patients experiencing disease progression.


Asunto(s)
Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/genética , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Piperidinas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Adenina/uso terapéutico , Adulto , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Masculino , Persona de Mediana Edad , Recurrencia Local de Neoplasia/diagnóstico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Mutación Puntual/efectos de los fármacos
7.
Mol Cell ; 52(5): 720-33, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24332178

RESUMEN

RBM5, a regulator of alternative splicing of apoptotic genes, and its highly homologous RBM6 and RBM10 are RNA-binding proteins frequently deleted or mutated in lung cancer. We report that RBM5/6 and RBM10 antagonistically regulate the proliferative capacity of cancer cells and display distinct positional effects in alternative splicing regulation. We identify the Notch pathway regulator NUMB as a key target of these factors in the control of cell proliferation. NUMB alternative splicing, which is frequently altered in lung cancer, can regulate colony and xenograft tumor formation, and its modulation recapitulates or antagonizes the effects of RBM5, 6, and 10 in cell colony formation. RBM10 mutations identified in lung cancer cells disrupt NUMB splicing regulation to promote cell growth. Our results reveal a key genetic circuit in the control of cancer cell proliferation.


Asunto(s)
Empalme Alternativo , Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Proteínas de Unión al ARN/genética , Proteínas Supresoras de Tumor/genética , Animales , Sitios de Unión , Procesos de Crecimiento Celular/genética , Línea Celular Tumoral , Células HeLa , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Células MCF-7 , Ratones , Ratones Desnudos , ARN/genética , Receptores Notch/genética , Transcriptoma
8.
Genome Res ; 26(6): 732-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197215

RESUMEN

Alternative splicing is regulated by multiple RNA-binding proteins and influences the expression of most eukaryotic genes. However, the role of this process in human disease, and particularly in cancer, is only starting to be unveiled. We systematically analyzed mutation, copy number, and gene expression patterns of 1348 RNA-binding protein (RBP) genes in 11 solid tumor types, together with alternative splicing changes in these tumors and the enrichment of binding motifs in the alternatively spliced sequences. Our comprehensive study reveals widespread alterations in the expression of RBP genes, as well as novel mutations and copy number variations in association with multiple alternative splicing changes in cancer drivers and oncogenic pathways. Remarkably, the altered splicing patterns in several tumor types recapitulate those of undifferentiated cells. These patterns are predicted to be mainly controlled by MBNL1 and involve multiple cancer drivers, including the mitotic gene NUMA1 We show that NUMA1 alternative splicing induces enhanced cell proliferation and centrosome amplification in nontumorigenic mammary epithelial cells. Our study uncovers novel splicing networks that potentially contribute to cancer development and progression.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Transcriptoma , Secuencias de Aminoácidos , Sitios de Unión , Proliferación Celular , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genoma Humano , Humanos , Mutación , Neoplasias/metabolismo , Factores de Empalme de ARN/fisiología
9.
Nucleic Acids Res ; 43(3): 1345-56, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25578962

RESUMEN

The determination of the alternative splicing isoforms expressed in cancer is fundamental for the development of tumor-specific molecular targets for prognosis and therapy, but it is hindered by the heterogeneity of tumors and the variability across patients. We developed a new computational method, robust to biological and technical variability, which identifies significant transcript isoform changes across multiple samples. We applied this method to more than 4000 samples from the The Cancer Genome Atlas project to obtain novel splicing signatures that are predictive for nine different cancer types, and find a specific signature for basal-like breast tumors involving the tumor-driver CTNND1. Additionally, our method identifies 244 isoform switches, for which the change occurs in the most abundant transcript. Some of these switches occur in known tumor drivers, including PPARG, CCND3, RALGDS, MITF, PRDM1, ABI1 and MYH11, for which the switch implies a change in the protein product. Moreover, some of the switches cannot be described with simple splicing events. Surprisingly, isoform switches are independent of somatic mutations, except for the tumor-suppressor FBLN2 and the oncogene MYH11. Our method reveals novel signatures of cancer in terms of transcript isoforms specifically expressed in tumors, providing novel potential molecular targets for prognosis and therapy. Data and software are available at: http://dx.doi.org/10.6084/m9.figshare.1061917 and https://bitbucket.org/regulatorygenomicsupf/iso-ktsp.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Algoritmos , Humanos , Mutación
11.
Virus Genes ; 50(1): 79-86, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25392089

RESUMEN

Recombination among RNA viruses is a natural phenomenon that appears to have played a significant role in the species development and the evolution of many strains. It also has particular significance for the risk assessment of plants which have been genetically modified for disease resistance by incorporating viral sequences into their genomes. However, the exact recombination events taking place in viral genomes are not investigated in detail for many virus groups. In this analysis, different single-stranded positive-sense RNA potyviruses were compared using various in silico recombination detection methods and new recombination events in the Sugarcane mosaic virus (SCMV) subgroup were detected. For an extended in silico recombination analysis, two of the analyzed Maize dwarf mosaic virus full-length genomes were sequenced additionally during this work. These results strengthen the evidence that recombination is a major driving force in virus evolution, and the emergence of new virus variants in the SCMV subgroup, paired with mutations, could generate viruses with altered biological properties. The intra- and interspecific homolog recombinations seem to be a general trait in this virus group, causing little or no changes to the amino acid of the progenies. However, we found a few breakpoints between the members of SCMV subgroup and the weed-infecting distant relatives, but only a few methods of the RDP3 package predicted these events with low significance level.


Asunto(s)
Genoma Viral , Potyvirus/genética , ARN Viral/genética , Recombinación Genética , Análisis de Secuencia de ADN , Análisis por Conglomerados , Biología Computacional , Evolución Molecular , Datos de Secuencia Molecular , Mutación , Filogenia , Homología de Secuencia , Zea mays/virología
12.
Cancer Res ; 84(1): 133-153, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37855660

RESUMEN

Enhancers are noncoding regulatory DNA regions that modulate the transcription of target genes, often over large distances along with the genomic sequence. Enhancer alterations have been associated with various pathological conditions, including cancer. However, the identification and characterization of somatic mutations in noncoding regulatory regions with a functional effect on tumorigenesis and prognosis remain a major challenge. Here, we present a strategy for detecting and characterizing enhancer mutations in a genome-wide analysis of patient cohorts, across three lung cancer subtypes. Lung tissue-specific enhancers were defined by integrating experimental data and public epigenomic profiles, and the genome-wide enhancer-target gene regulatory network of lung cells was constructed by integrating chromatin three-dimensional architecture data. Lung cancers possessed a similar mutation burden at tissue-specific enhancers and exons but with differences in their mutation signatures. Functionally relevant alterations were prioritized on the basis of the pathway-level integration of the effect of a mutation and the frequency of mutations on individual enhancers. The genes enriched for mutated enhancers converged on the regulation of key biological processes and pathways relevant to tumor biology. Recurrent mutations in individual enhancers also affected the expression of target genes, with potential relevance for patient prognosis. Together, these findings show that noncoding regulatory mutations have a potential relevance for cancer pathogenesis and can be exploited for patient classification. SIGNIFICANCE: Mapping enhancer-target gene regulatory interactions and analyzing enhancer mutations at the level of their target genes and pathways reveal convergence of recurrent enhancer mutations on biological processes involved in tumorigenesis and prognosis.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias Pulmonares , Humanos , Elementos de Facilitación Genéticos/genética , Neoplasias Pulmonares/genética , Mutación , Carcinogénesis/genética
14.
Cell Rep ; 42(6): 112539, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243593

RESUMEN

c-Src tyrosine kinase is a renowned key intracellular signaling molecule and a potential target for cancer therapy. Secreted c-Src is a recent observation, but how it contributes to extracellular phosphorylation remains elusive. Using a series of domain deletion mutants, we show that the N-proximal region of c-Src is essential for its secretion. The tissue inhibitor of metalloproteinases 2 (TIMP2) is an extracellular substrate of c-Src. Limited proteolysis-coupled mass spectrometry and mutagenesis studies verify that the Src homology 3 (SH3) domain of c-Src and the P31VHP34 motif of TIMP2 are critical for their interaction. Comparative phosphoproteomic analyses identify an enrichment of PxxP motifs in phosY-containing secretomes from c-Src-expressing cells with cancer-promoting roles. Inhibition of extracellular c-Src using custom SH3-targeting antibodies disrupt kinase-substrate complexes and inhibit cancer cell proliferation. These findings point toward an intricate role for c-Src in generating phosphosecretomes, which will likely influence cell-cell communication, particularly in c-Src-overexpressing cancers.


Asunto(s)
Proteínas Tirosina Quinasas , Secretoma , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Fosfotransferasas , Fosforilación , Dominios Homologos src , Comunicación Celular , Familia-src Quinasas
15.
J Mol Diagn ; 25(8): 555-568, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37088137

RESUMEN

Pediatric acute myeloid leukemia (AML) represents a major cause of childhood leukemic mortality, with only a limited number of studies investigating the molecular landscape of the disease. Here, we present an integrative analysis of cytogenetic and molecular profiles of 75 patients with pediatric AML from a multicentric, real-world patient cohort treated according to AML Berlin-Frankfurt-Münster protocols. Targeted next-generation sequencing of 54 genes revealed 17 genes that were recurrently mutated in >5% of patients. Considerable differences were observed in the mutational profiles compared with previous studies, as BCORL1, CUX1, KDM6A, PHF6, and STAG2 mutations were detected at a higher frequency than previously reported, whereas KIT, NRAS, and KRAS were less frequently mutated. Our study identified novel recurrent mutations at diagnosis in the BCORL1 gene in 9% of the patients. Tumor suppressor gene (PHF6, TP53, and WT1) mutations were found to be associated with induction failure and shorter event-free survival, suggesting important roles of these alterations in resistance to therapy and disease progression. Comparison of the mutational landscape at diagnosis and relapse revealed an enrichment of mutations in tumor suppressor genes (16.2% versus 44.4%) and transcription factors (35.1% versus 55.6%) at relapse. Our findings shed further light on the heterogeneity of pediatric AML and identify previously unappreciated alterations that may lead to improved molecular characterization and risk stratification of pediatric AML.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Niño , Mutación , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Recurrencia , Genómica
16.
New Phytol ; 196(4): 1060-1073, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23046112

RESUMEN

Smoke-derived compounds provide a strong chemical signal to seeds in the soil seed bank, allowing them to take advantage of the germination niche created by the occurrence of fire. The germination stimulatory activity of smoke can largely be attributed to karrikinolide (KAR(1) ), while a related compound, trimethylbutenolide (TMB), has been shown to have an inhibitory effect on germination. The aim of this study was to characterize the interaction of these potent fire-generated compounds. Dose-response analysis, leaching tests and a detailed transcriptome study were performed using highly KAR(1) -sensitive lettuce (Lactuca sativa cv 'Grand Rapids') achenes. Dose-response analysis demonstrated that the compounds are not competitors and TMB modulates germination in a concentration-dependent manner. The transcriptome analysis revealed a contrasting expression pattern induced by the compounds. KAR(1) suppressed, while TMB up-regulated ABA, seed maturation and dormancy-related transcripts. The effect of TMB was reversed by leaching the compound, while the KAR(1) effect was only reversible by leaching within the first 2 h of KAR(1) treatment. Our findings suggest that the compounds may act in concert for germination-related signaling. After the occurrence of fire, sufficient rainfall would contribute to post-germination seedling recruitment by reducing the concentration of the inhibitory compound.


Asunto(s)
4-Butirolactona/análogos & derivados , Furanos/farmacología , Germinación/efectos de los fármacos , Germinación/fisiología , Lactuca/fisiología , Piranos/farmacología , Semillas/crecimiento & desarrollo , Humo/análisis , 4-Butirolactona/análisis , 4-Butirolactona/farmacología , Ácido Abscísico/metabolismo , Relación Dosis-Respuesta a Droga , Incendios , Furanos/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Latencia en las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Piranos/metabolismo , Reproducibilidad de los Resultados , Semillas/efectos de los fármacos , Semillas/fisiología
17.
Physiol Plant ; 145(2): 296-314, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22257084

RESUMEN

The effect of light on gene expression and hormonal status during the development of freezing tolerance was studied in winter wheat (Triticum aestivum var. Mv Emese) and in the spring wheat variety Nadro. Ten-day-old plants (3-leaf stage) were cold hardened at 5°C for 12 days under either normal (250 µmol m(-2) s(-1) ) or low (20 µmol m(-2) s(-1) ) light conditions. Comprehensive analysis was carried out to explore the background of frost tolerance and the differences between these wheat varieties. Global genome analysis was performed, enquiring about the details of the cold signaling pathways. The expression level of a large number of genes is affected by light, and this effect may differ in different wheat genotypes. Photosynthesis-related processes probably play a key role in the enhancement of freezing tolerance; however, there are several other genes whose induction is light-dependent, so either there is cross-talk between signaling of chloroplast originating and other protective mechanisms or there are other light sensors that transduce signals to the components responsible for stress tolerance. Changes in the level of both plant hormones (indole-3-acetic acid, cytokinins, nitric oxide and ethylene precursor 1-aminocyclopropane-1-carboxylic acid) and other stress-related protective substances (proline, phenolics) were investigated during the phases of the hardening period. Hormonal levels were also affected by light and their dynamics indicate that wheat plants try to keep growing during the cold-hardening period. The data from this experiment may provide a new insight into the cross talk between cold and light signaling in wheat.


Asunto(s)
Aclimatación/fisiología , Congelación , Regulación de la Expresión Génica de las Plantas , Luz , Reguladores del Crecimiento de las Plantas/metabolismo , Triticum/genética , Triticum/metabolismo , Genes de Plantas/fisiología , Variación Genética , Genotipo , Transducción de Señal
18.
Life (Basel) ; 12(1)2022 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-35054504

RESUMEN

An increasing amount of evidence indicates the critical role of the cutaneous nervous system in the initiation and maintenance of psoriatic skin lesions by neurogenic inflammation. However, molecular mechanisms affecting cutaneous neurons are largely uncharacterized. Therefore, we reanalyzed a psoriatic RNA sequencing dataset from published transcriptome experiments of nearly 300 individuals. Using the Ingenuity Pathway Analysis software, we associated several hundreds of differentially expressed transcripts (DETs) to nervous system development and functions. Since neuronal projections were previously reported to be affected in psoriasis, we performed an in-depth analysis of neurite formation-related process. Our in silico analysis suggests that SEMA-PLXN and ROBO-DCC-UNC5 regulating axonal growth and repulsion are differentially affected in non-lesional and lesional skin samples. We identified opposing expressional alterations in secreted ligands for axonal guidance signaling (RTN4/NOGOA, NTNs, SEMAs, SLITs) and non-conventional axon guidance regulating ligands, including WNT5A and their receptors, modulating axon formation. These differences in neuritogenesis may explain the abnormal cutaneous nerve filament formation described in psoriatic skin. The processes also influence T-cell activation and infiltration, thus highlighting an additional angle of the crosstalk between the cutaneous nervous system and the immune responses in psoriasis pathogenesis, in addition to the known neurogenic pro-inflammatory mediators.

19.
J Mol Diagn ; 24(3): 224-240, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954119

RESUMEN

Central nervous system (CNS) lymphoma is a rare and aggressive non-Hodgkin lymphoma that might arise in the CNS (primary CNS lymphoma) or disseminates from a systemic lymphoma to the CNS (secondary CNS lymphoma). Dysregulated expression of miRNAs is associated with various pathologic processes, and miRNA expression patterns may have diagnostic, prognostic, and therapeutic implications. However, miRNA expression is understudied in CNS lymphomas. We performed expression analysis of 798 miRNAs in 73 CNS lymphoma samples using the NanoString platform, followed by an analysis to identify potential diagnostic biomarkers characterizing subgroups and to examine differences based on their primary and secondary nature, molecular subtype, mutational patterns, and survival. Thirty-one differentially expressed miRNAs were identified between primary and secondary groups. In addition, 7 more miRNAs were identified associated with a molecular subtype and 25 associated with mutation status. Using unsupervised clustering methods, a small but distinct primary CNS lymphoma subgroup, with characteristically different expression patterns compared with the rest of the cases was defined. Finally, differentially regulated pathways were identified in the above comparisons and the utility of miRNA expression patterns in predicting survival was assessed. Our study identifies a novel CNS lymphoma subgroup defined by distinct miRNAs, proves the importance of specific miRNAs and pathways in the pathogenesis of CNS lymphomas, and provides the basis for future research in defining potential biomarkers.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Linfoma , MicroARNs , Neoplasias Primarias Secundarias , Biomarcadores , Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/genética , Humanos , Linfoma/diagnóstico , Linfoma/genética , MicroARNs/genética
20.
BMC Plant Biol ; 10: 236, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-21044315

RESUMEN

BACKGROUND: Smoke released from burning vegetation functions as an important environmental signal promoting the germination of many plant species following a fire. It not only promotes the germination of species from fire-prone habitats, but several species from non-fire-prone areas also respond, including some crops. The germination stimulatory activity can largely be attributed to the presence of a highly active butenolide compound, 3-methyl-2H-furo[2,3-c]pyran-2-one (referred to as karrikin 1 or KAR1), that has previously been isolated from plant-derived smoke. Several hypotheses have arisen regarding the molecular background of smoke and KAR1 action. RESULTS: In this paper we demonstrate that although smoke-water and KAR1 treatment of maize kernels result in a similar physiological response, the gene expression and the protein ubiquitination patterns are quite different. Treatment with smoke-water enhanced the ubiquitination of proteins and activated protein-degradation-related genes. This effect was completely absent from KAR1-treated kernels, in which a specific aquaporin gene was distinctly upregulated. CONCLUSIONS: Our findings indicate that the array of bioactive compounds present in smoke-water form an environmental signal that may act together in germination stimulation. It is highly possible that the smoke/KAR1 'signal' is perceived by a receptor that is shared with the signal transduction system implied in perceiving environmental cues (especially stresses and light), or some kind of specialized receptor exists in fire-prone plant species which diverged from a more general one present in a common ancestor, and also found in non fire-prone plants allowing for a somewhat weaker but still significant response. Besides their obvious use in agricultural practices, smoke and KAR1 can be used in studies to gain further insight into the transcriptional changes during germination.


Asunto(s)
Furanos/farmacología , Perfilación de la Expresión Génica , Piranos/farmacología , Semillas/genética , Zea mays/genética , Análisis por Conglomerados , Incendios , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/genética , Immunoblotting , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piranos/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Humo/análisis , Agua/análisis , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA