Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Nature ; 612(7940): 483-487, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477532

RESUMEN

Recent observations suggest that the large carbon sink in mature and recovering forests may be strongly limited by nitrogen1-3. Nitrogen-fixing trees (fixers) in symbiosis with bacteria provide the main natural source of new nitrogen to tropical forests3,4. However, abundances of fixers are tightly constrained5-7, highlighting the fundamental unanswered question of what limits new nitrogen entering tropical ecosystems. Here we examine whether herbivory by animals is responsible for limiting symbiotic nitrogen fixation in tropical forests. We evaluate whether nitrogen-fixing trees experience more herbivory than other trees, whether herbivory carries a substantial carbon cost, and whether high herbivory is a result of herbivores targeting the nitrogen-rich leaves of fixers8,9. We analysed 1,626 leaves from 350 seedlings of 43 tropical tree species in Panama and found that: (1) although herbivory reduces the growth and survival of all seedlings, nitrogen-fixing trees undergo 26% more herbivory than non-fixers; (2) fixers have 34% higher carbon opportunity costs owing to herbivory than non-fixers, exceeding the metabolic cost of fixing nitrogen; and (3) the high herbivory of fixers is not driven by high leaf nitrogen. Our findings reveal that herbivory may be sufficient to limit tropical symbiotic nitrogen fixation and could constrain its role in alleviating nitrogen limitation on the tropical carbon sink.


Asunto(s)
Bosques , Herbivoria , Fijación del Nitrógeno , Nitrógeno , Árboles , Clima Tropical , Animales , Carbono/metabolismo , Secuestro de Carbono , Nitrógeno/metabolismo , Panamá , Hojas de la Planta , Plantones , Árboles/clasificación , Árboles/metabolismo
2.
Oecologia ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38829402

RESUMEN

Plants employ diverse anti-herbivore defences that can covary to form syndromes consisting of multiple traits. Such syndromes are hypothesized to impact herbivores more than individual defences. We studied 16 species of lowland willows occurring in central Europe and explored if their chemical and physical traits form detectable syndromes. We tested for phylogenetic trends in the syndromes and explored whether three herbivore guilds (i.e., generalist leaf-chewers, specialist leaf-chewers, and gallers) are affected more by the detected syndromes or individual traits. The recovered syndromes showed low phylogenetic signal and were mainly defined by investment in concentration, richness, or uniqueness of structurally related phenolic metabolites. Resource acquisition traits or inducible volatile organic compounds exhibited a limited correlation with the syndromes. Individual traits composing the syndromes showed various correlations to the assemblages of herbivores from the three studied guilds. In turn, we found some support for the hypothesis that defence syndromes are composed of traits that provide defence against various herbivores. However, individual traits rather than trait syndromes explained more variation for all studied herbivore assemblages. The detected negative correlations between various phenolics suggest that investment trade-offs may occur primarily among plant metabolites with shared metabolic pathways that may compete for their precursors. Moreover, several traits characterizing the recovered syndromes play additional roles in willows other than defence from herbivory. Taken together, our findings suggest that the detected syndromes did not solely evolve as an anti-herbivore defence.

3.
J Chem Ecol ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809282

RESUMEN

Plant-microbe interactions play a pivotal role in shaping host fitness, especially concerning chemical defense mechanisms. In cycads, establishing direct correlations between specific endophytic microbes and the synthesis of highly toxic defensive phytochemicals has been challenging. Our research delves into the intricate relationship between plant-microbe associations and the variation of secondary metabolite production in two closely related Zamia species that grow in distinct habitats; terrestrial and epiphytic. Employing an integrated approach, we combined microbial metabarcoding, which characterize the leaf endophytic bacterial and fungal communities, with untargeted metabolomics to test if the relative abundances of specific microbial taxa in these two Zamia species were associated with different metabolome profiles. The two species studied shared approximately 90% of the metabolites spanning diverse biosynthetic pathways: alkaloids, amino acids, carbohydrates, fatty acids, polyketides, shikimates, phenylpropanoids, and terpenoids. Co-occurrence networks revealed positive associations among metabolites from different pathways, underscoring the complexity of their interactions. Our integrated analysis demonstrated to some degree that the intraspecific variation in metabolome profiles of the two host species was associated with the abundance of bacterial orders Acidobacteriales and Frankiales, as well as the fungal endophytes belonging to the orders Chaetothyriales, Glomerellales, Heliotiales, Hypocreales, and Sordariales. We further associate individual metabolic similarity with four specific fungal endophyte members of the core microbiota, but no specific bacterial taxa associations were identified. This study represents a pioneering investigation to characterize leaf endophytes and their association with metabolomes in tropical gymnosperms, laying the groundwork for deeper inquiries into this complex domain.

4.
Ecol Lett ; 26(11): 1898-1910, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37776563

RESUMEN

Metabolomics provides an unprecedented window into diverse plant secondary metabolites that represent a potentially critical niche dimension in tropical forests underlying species coexistence. Here, we used untargeted metabolomics to evaluate chemical composition of 358 tree species and its relationship with phylogeny and variation in light environment, soil nutrients, and insect herbivore leaf damage in a tropical rainforest plot. We report no phylogenetic signal in most compound classes, indicating rapid diversification in tree metabolomes. We found that locally co-occurring species were more chemically dissimilar than random and that local chemical dispersion and metabolite diversity were associated with lower herbivory, especially that of specialist insect herbivores. Our results highlight the role of secondary metabolites in mediating plant-herbivore interactions and their potential to facilitate niche differentiation in a manner that contributes to species coexistence. Furthermore, our findings suggest that specialist herbivore pressure is an important mechanism promoting phytochemical diversity in tropical forests.


Asunto(s)
Herbivoria , Bosque Lluvioso , Animales , Bosques , Hojas de la Planta , Filogenia , Insectos
5.
Ecol Lett ; 26(9): 1559-1571, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37345539

RESUMEN

Diverse specialised metabolites contributed to the success of vascular plants in colonising most terrestrial habitats. Understanding how distinct aspects of chemical diversity arise through heterogeneous environmental pressures can help us understand the effects of abiotic and biotic stress on plant evolution and community assembly. We examined highland and lowland willow species within a phylogenetic framework to test for trends in their chemical α-diversity (richness) and ß-diversity (variation among species sympatric in elevation). We show that differences in chemistry among willows growing at different elevations occur mainly through shifts in chemical ß-diversity and due to convergence or divergence among species sharing their elevation level. We also detect contrasting phylogenetic trends in concentration and α-diversity of metabolites in highland and lowland willow species. The resulting elevational patterns contribute to the chemical diversity of willows and suggest that variable selective pressure across ecological gradients may, more generally, underpin complex changes in plant chemistry.


Asunto(s)
Salix , Salix/genética , Filogenia , Ecosistema , Plantas , Biodiversidad
6.
J Chem Ecol ; 49(7-8): 437-450, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37099216

RESUMEN

The metabolome represents an important functional trait likely important to plant invasion success, but we have a limited understanding of whether the entire metabolome or targeted groups of compounds confer an advantage to invasive as compared to native taxa. We conducted a lipidomic and metabolomic analysis of the cosmopolitan wetland grass Phragmites australis. We classified features into metabolic pathways, subclasses, and classes. Subsequently, we used Random Forests to identify informative features to differentiate five phylogeographic and ecologically distinct lineages: European native, North American invasive, North American native, Gulf, and Delta. We found that lineages had unique phytochemical fingerprints, although there was overlap between the North American invasive and North American native lineages. Furthermore, we found that divergence in phytochemical diversity was driven by compound evenness rather than metabolite richness. Interestingly, the North American invasive lineage had greater chemical evenness than the Delta and Gulf lineages but lower evenness than the North American native lineage. Our results suggest that metabolomic evenness may represent a critical functional trait within a plant species. Its role in invasion success, resistance to herbivory, and large-scale die-off events common to this and other plant species remain to be investigated.


Asunto(s)
Poaceae , Humedales , Plantas , Fenotipo , Fitoquímicos
7.
Am J Bot ; 107(2): 219-228, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32072625

RESUMEN

PREMISE: Interactions between fungal endophytes and their host plants present useful systems for identifying important factors affecting assembly of host-associated microbiomes. Here we investigated the role of secondary chemistry in mediating host affinity of asymptomatic foliar endophytic fungi using Psychotria spp. and Theobroma cacao (cacao) as hosts. METHODS: First, we surveyed endophytic communities in Psychotria species in a natural common garden using culture-based methods. Then we compared differences in endophytic community composition with differences in foliar secondary chemistry in the same host species, determined by liquid chromatography-tandem mass spectrometry. Finally, we tested how inoculation with live and heat-killed endophytes affected the cacao chemical profile. RESULTS: Despite sharing a common environment and source pool for endophyte spores, different Psychotria host species harbored strikingly different endophytic communities that reflected intrinsic differences in their leaf chemical profiles. In T. cacao, inoculation with live and heat-killed endophytes produced distinct cacao chemical profiles not found in uninoculated plants or pure fungal cultures, suggesting that endophytes, like pathogens, induce changes in secondary chemical profiles of their host plant. CONCLUSIONS: Collectively our results suggest at least two potential processes: (1) Plant secondary chemistry influences assembly and composition of fungal endophytic communities, and (2) host colonization by endophytes subsequently induces changes in the host chemical landscape. We propose a series of testable predictions based on the possibility that reciprocal chemical interactions are a general property of plant-endophyte interactions.


Asunto(s)
Cacao , Hongos , Endófitos , Hojas de la Planta , Plantas
8.
Ecology ; 99(12): 2647-2653, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30418676

RESUMEN

Plant enemies that attack chemically similar host species are thought to mediate competitive exclusion of chemically similar plants and select for chemical divergence among closely related species. This hypothesis predicts that plant defenses should diverge rapidly, minimizing phylogenetic signal. To evaluate this prediction, we quantified metabolomic similarity for 203 tree species that represent >89% of all individuals in large forest plots in Maryland and Panama. We constructed molecular networks based on mass spectrometry of all 203 species, quantified metabolomic similarity for all pairwise combinations of species, and used phylogenetically independent contrasts to evaluate how pairwise metabolomic similarity varies phylogenetically. Leaf metabolomes exhibited clear phylogenetic signal for the temperate plot, which is inconsistent with the prediction. In contrast, leaf metabolomes lacked phylogenetic signal for the tropical plot, with particularly low metabolomic similarity among congeners. In addition, community-wide variation in metabolomes was much greater for the tropical community, with single tropical genera supporting greater metabolomic variation than the entire temperate community. Our results are consistent with the hypothesis that stronger plant-enemy interactions lead to more rapid divergence and greater metabolomic variation in tropical than temperate plants. Additional community-level foliar metabolomes will be required from tropical and temperate forests to evaluate this hypothesis.


Asunto(s)
Metabolómica , Clima Tropical , Panamá , Filogenia , Plantas/clasificación
9.
New Phytol ; 214(3): 952-958, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28134431

RESUMEN

Contents 952 I. 952 II. 953 III. 955 IV. 956 V. 957 957 References 957 SUMMARY: Much of our understanding of the mechanisms by which biotic interactions shape plant communities has been constrained by the methods available to study the diverse secondary chemistry that defines plant relationships with other organisms. Recent innovations in analytical chemistry and bioinformatics promise to reveal the cryptic chemical traits that mediate plant ecology and evolution by facilitating simultaneous structural comparisons of hundreds of unknown molecules to each other and to libraries of known compounds. Here, I explore the potential for mass spectrometry and nuclear magnetic resonance metabolomics to enable unprecedented tests of seminal, but largely untested hypotheses that propose a fundamental role for plant chemical defenses against herbivores and pathogens in the evolutionary origins and ecological coexistence of plant species diversity.


Asunto(s)
Metabolómica , Filogenia , Plantas/química , Plantas/metabolismo , Especificidad de la Especie
10.
Ecology ; 98(3): 616-623, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984635

RESUMEN

Specialist herbivores and pathogens could induce negative conspecific density dependence among their hosts and thereby contribute to the diversity of plant communities. A small number of hyperdiverse genera comprise a large portion of tree diversity in tropical forests. These closely related congeners are likely to share natural enemies. Diverse defenses could still allow congeners to partition niche space defined by natural enemies, but interspecific differences in defenses would have to exceed intraspecific variation in defenses. We ask whether interspecific variation in secondary chemistry exceeds intraspecific variation for species from four hyperdiverse tropical tree genera. We used novel methods to quantify chemical structural similarity for all compounds present in methanol extracts of leaf tissue. We sought to maximize intraspecific variation by selecting conspecific leaves from different ontogenetic stages (expanding immature vs. fully hardened mature), different light environments (deep understory shade vs. large forest gaps), and different seasons (dry vs. wet). Chemical structural similarity differed with ontogeny, light environment, and season, but interspecific differences including those among congeneric species were much larger. Our results suggest that species differences in secondary chemistry are large relative to within-species variation, perhaps sufficiently large to permit niche segregation among congeneric tree species based on chemical defenses.


Asunto(s)
Bosques , Hojas de la Planta/química , Árboles/química , Herbivoria , Estaciones del Año , Clima Tropical
11.
Ecol Lett ; 18(10): 1057-67, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26248800

RESUMEN

Ecological constraints on independent breeding are recognised as major drivers of cooperative breeding across diverse lineages. How the prevalence and degree of cooperative breeding relates to ecological variation remains unresolved. Using a large data set of cooperative nesting in Polistes wasps we demonstrate that different aspects of cooperative breeding are likely to be driven by different aspects of climate. Whether or not a species forms cooperative groups is associated with greater short-term temperature fluctuations. In contrast, the number of cooperative foundresses increases in more benign environments with warmer, wetter conditions. The same data set reveals that intraspecific responses to climate variation do not mirror genus-wide trends and instead are highly heterogeneous among species. Collectively these data suggest that the ecological drivers that lead to the origin or loss of cooperation are different from those that influence the extent of its expression within populations.


Asunto(s)
Clima , Conducta Cooperativa , Comportamiento de Nidificación , Reproducción/fisiología , Avispas/fisiología , Animales , Filogenia , Avispas/genética
12.
bioRxiv ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38798461

RESUMEN

Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Further, we confirm the presence of alkaloids in two putatively non-toxic frogs from other families. Our data suggest the existence of a phenotypic intermediate between toxin consumption and sequestration-passive accumulation-that differs from active sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms.

13.
bioRxiv ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38798440

RESUMEN

Understanding the distribution of hundreds of thousands of plant metabolites across the plant kingdom presents a challenge. To address this, we curated publicly available LC-MS/MS data from 19,075 plant extracts and developed the plantMASST reference database encompassing 246 botanical families, 1,469 genera, and 2,793 species. This taxonomically focused database facilitates the exploration of plant-derived molecules using tandem mass spectrometry (MS/MS) spectra. This tool will aid in drug discovery, biosynthesis, (chemo)taxonomy, and the evolutionary ecology of herbivore interactions.

14.
Ecol Lett ; 16(8): 995-1003, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23773378

RESUMEN

The Janzen-Connell hypothesis proposes that plant interactions with host-specific antagonists can impair the fitness of locally abundant species and thereby facilitate coexistence. However, insects and pathogens that associate with multiple hosts may mediate exclusion rather than coexistence. We employ a simulation model to examine the effect of enemy host breadth on plant species richness and defence community structure, and to assess expected diversity maintenance in example systems. Only models in which plant enemy similarity declines rapidly with defence similarity support greater species richness than models of neutral drift. In contrast, a wide range of enemy host breadths result in spatial dispersion of defence traits, at both landscape and local scales, indicating that enemy-mediated competition may increase defence-trait diversity without enhancing species richness. Nevertheless, insect and pathogen host associations in Panama and Papua New Guinea demonstrate a potential to enhance plant species richness and defence-trait diversity comparable to strictly specialised enemies.


Asunto(s)
Biota , Escarabajos/fisiología , Hongos/fisiología , Lepidópteros/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/microbiología , Animales , Cadena Alimentaria , Larva/crecimiento & desarrollo , Larva/fisiología , Lepidópteros/crecimiento & desarrollo , Modelos Biológicos , Panamá , Papúa Nueva Guinea , Procesos Estocásticos
15.
Ecol Evol ; 13(5): e10123, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37255847

RESUMEN

Plants produce diverse chemical defenses with contrasting effects on different insect herbivores. Deploying herbivore-specific responses can help plants increase their defensive efficiency. Here, we explore how variation in induced plant responses correlates with herbivore species, order, feeding guild, and level of specialization. In a greenhouse experiment, we exposed 149 plants of Salix fragilis (Linnaeus, 1753) to 22 herbivore species naturally associated with this host. The insects belonged to four orders (Coleoptera, Lepidoptera, Hemiptera, and Hymenoptera), three feeding guilds (external leaf-chewers, leaf-tying chewers, and sap-sucking), and included both dietary specialists and generalists. Following herbivory, we quantified induced changes in volatiles and nonvolatile leaf metabolites. We performed multivariate analyses to assess the correlation between herbivore order, feeding guild, dietary specialization, chewing damage by herbivores, and induced responses. The volatile composition was best explained by chewing damage and insect order, with Coleoptera and Lepidoptera eliciting significantly different responses. Furthermore, we recorded significant differences in elicited volatiles among some species within the two orders. Variation in nonvolatile leaf metabolites was mainly explained by the presence of insects, as plants exposed to herbivores showed significantly different metabolites from controls. Herbivore order also played a role to some extent, with beetles eliciting different responses than other herbivores. The induction of volatile and nonvolatile leaf metabolites shows different levels of specificity. The specificity in volatiles could potentially serve as an important cue to specialized predators or parasitoids, increasing the efficacy of volatiles as indirect defenses. By contrast, the induction of nonvolatile leaf metabolites was largely unaffected by herbivore identity. Most nonvolatile metabolites were downregulated, possibly indicating that plants redirected their resources from leaves in response to herbivory. Our results demonstrate how diverse responses to herbivores can contribute to the diversity of plant defensive strategies.

16.
Ecol Evol ; 10(16): 8770-8792, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884656

RESUMEN

Ecological release from herbivory due to chemical novelty is commonly predicted to facilitate biological invasions by plants, but has not been tested on a community scale. We used metabolomics based on mass spectrometry molecular networks to assess the novelty of foliar secondary chemistry of 15 invasive plant species compared to 46 native species at a site in eastern North America. Locally, invasive species were more chemically distinctive than natives. Among the 15 invasive species, the more chemically distinct were less preferred by insect herbivores and less browsed by deer. Finally, an assessment of invasion frequency in 2,505 forest plots in the Atlantic coastal plain revealed that, regionally, invasive species that were less preferred by insect herbivores, less browsed by white-tailed deer, and chemically distinct relative to the native plant community occurred more frequently in survey plots. Our results suggest that chemically mediated release from herbivores contributes to many successful invasions.

17.
Curr Opin Insect Sci ; 32: 124-130, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31113624

RESUMEN

Understanding coexistence in species-rich communities remains a primary challenge of ecology. Interactions mediated through multitrophic networks are thought to play an important role in sustaining species coexistence in the face of competition for resources. The identity of trophic partners and the intensity with which they interact are often mediated by diverse secondary metabolites. Recent innovations in organic-molecule bioinformatics and multivariate statistical analysis are rapidly advancing our understanding of metabolites and the multitrophic interactions they mediate. Here, I examine recent advances in the study of chemical ecology in species-rich multitrophic communities, with an emphasis on plant-herbivore networks, and explore the potential for chemically mediated interactions to shape community composition and sustain species diversity in ecological communities.


Asunto(s)
Cadena Alimentaria , Plantas/química , Animales , Biota , Herbivoria , Metabolómica , Compuestos Orgánicos Volátiles
18.
PeerJ ; 7: e7536, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31579568

RESUMEN

Plant interactions with other organisms are mediated by chemistry, yet chemistry varies among conspecific and within individual plants. The foliar metabolome-the suite of small-molecule metabolites found in the leaf-changes during leaf ontogeny and is influenced by the signaling molecule jasmonic acid. Species differences in secondary metabolites are thought to play an important ecological role by limiting the host ranges of herbivores and pathogens, and hence facilitating competitive coexistence among plant species in species-rich plant communities such as tropical forests. Yet it remains unclear how inducible and ontogenetic variation compare with interspecific variation, particularly in tropical trees. Here, we take advantage of novel methods to assemble mass spectra of all compounds in leaf extracts into molecular networks that quantify their chemical structural similarity in order to compare inducible and ontogenetic chemical variation to among-species variation in species-rich tropical tree genera. We ask (i) whether young and mature leaves differ chemically, (ii) whether jasmonic acid-inducible chemical variation differs between young and mature leaves, and (iii) whether interspecific exceeds intraspecific chemical variation for four species from four hyperdiverse tropical tree genera. We observed significant effects of the jasmonic acid treatment for three of eight combinations of species and ontogenetic stage evaluated. Three of the four species also exhibited large metabolomic differences with leaf ontogenetic stage. The profound effect of leaf ontogenetic stage on the foliar metabolome suggests a qualitative turnover in secondary chemistry with leaf ontogeny. We also quantified foliar metabolomes for 45 congeners of the four focal species. Chemical similarity was much greater within than between species for all four genera, even when within-species comparisons included leaves that differed in age and jasmonic acid treatment. Despite ontogenetic and inducible variation within species, chemical differences among congeneric species may be sufficient to partition niche space with respect to chemical defense.

19.
Appl Plant Sci ; 6(3): e1033, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29732263

RESUMEN

PREMISE OF THE STUDY: We describe a field collection, sample processing, and ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) instrumental and bioinformatics method developed for untargeted metabolomics of plant tissue and suitable for molecular networking applications. METHODS AND RESULTS: A total of 613 leaf samples from 204 tree species was collected in the field and analyzed using UHPLC-MS/MS. Matching of molecular fragmentation spectra generated over 125,000 consensus spectra representing unique molecular structures, 26,410 of which were linked to at least one structurally similar compound. CONCLUSIONS: Our workflow is able to generate molecular networks of hundreds of thousands of compounds representing broad classes of plant secondary chemistry and a wide range of molecular masses, from 100 to 2500 daltons, making possible large-scale comparative metabolomics, as well as studies of chemical community ecology and macroevolution in plants.

20.
Nat Biotechnol ; 34(8): 828-837, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27504778

RESUMEN

The potential of the diverse chemistries present in natural products (NP) for biotechnology and medicine remains untapped because NP databases are not searchable with raw data and the NP community has no way to share data other than in published papers. Although mass spectrometry (MS) techniques are well-suited to high-throughput characterization of NP, there is a pressing need for an infrastructure to enable sharing and curation of data. We present Global Natural Products Social Molecular Networking (GNPS; http://gnps.ucsd.edu), an open-access knowledge base for community-wide organization and sharing of raw, processed or identified tandem mass (MS/MS) spectrometry data. In GNPS, crowdsourced curation of freely available community-wide reference MS libraries will underpin improved annotations. Data-driven social-networking should facilitate identification of spectra and foster collaborations. We also introduce the concept of 'living data' through continuous reanalysis of deposited data.


Asunto(s)
Productos Biológicos/química , Productos Biológicos/clasificación , Curaduría de Datos/métodos , Bases de Datos de Compuestos Químicos , Difusión de la Información/métodos , Espectrometría de Masas/estadística & datos numéricos , Sistemas de Administración de Bases de Datos , Almacenamiento y Recuperación de la Información/métodos , Internacionalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA