Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Oral Implants Res ; 28(10): e151-e158, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27596293

RESUMEN

OBJECTIVE: Low-frequency ultrasound is widely used in the treatment of chronically infected wounds. To investigate its feasibility as a method for in situ restoration of metal implant surfaces in cases of peri-implantitis, we evaluated how low-frequency ultrasound affected surface properties of and response of human osteoblast-like MG63 cells to titanium (Ti). MATERIAL AND METHODS: Three Ti surfaces [hydrophobic/smooth (pretreatment, PT); hydrophobic/rough (sandblasted/acid-etched, SLA); and hydrophilic/rough (SLA processed and stored hydrophilicity, mSLA)] were subjected to 25 kHz ultrasound for 10 min/cm2 . Substrate roughness, chemical composition, and wettability were analyzed before and after ultrasound application. Osteoblastic maturation of cells on sonicated disks was compared to cells on untreated disks. RESULTS: Ultrasound treatment altered the topography of all surfaces. Contact angles were reduced, and chemical compositions were altered by ultrasound on PT and SLA surfaces. Cell response to sonicated PT was comparable to untreated PT. Alkaline phosphatase was increased on sonicated SLA compared to untreated SLA, whereas DNA, osteocalcin, BMP2, osteoprotegerin, and VEGF-A were unchanged. Cells produced less osteocalcin and BMP2 on sonicated mSLA than on untreated mSLA, but no other parameters were affected. CONCLUSIONS: These results show that low-frequency ultrasound altered Ti surface properties. Osteoblasts were sensitive to the changes induced by ultrasound treatment. The data suggest that the effect is to delay differentiation, but it is unclear whether this delay will prevent osseointegration. These results suggest that low-frequency ultrasound may be useful for treating implant surfaces in situ leading to successful re-osseointegration of implants affected by peri-implantitis.


Asunto(s)
Osteoblastos/fisiología , Fenotipo , Titanio , Ultrasonografía , Células Cultivadas , Humanos , Propiedades de Superficie , Ultrasonografía/métodos
2.
J Tissue Eng Regen Med ; 12(7): 1742-1753, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29766656

RESUMEN

Cell-based tissue engineering can promote cartilage tissue regeneration, but cell retention in the implant site post-delivery is problematic. Alginate microbeads containing adipose stem cells (ASCs) pretreated with chondrogenic media have been used successfully to regenerate hyaline cartilage in critical size defects in rat xiphoid suggesting that they may be used to treat defects in elastic cartilages such as the ear. To test this, we used microbeads made with low viscosity, high mannuronate medical grade alginate using a high electrostatic potential, and a calcium cross linking solution containing glucose. Microbeads containing rabbit ASCs (rbASCs) were implanted bilaterally in 3 mm critical size midcartilage ear defects of six skeletally mature male New Zealand White rabbits (empty defect; microbeads without cells; microbeads with cells; degradable microbeads with cells; and autograft). Twelve weeks post-implantation, regeneration was assessed by microCT and histology. Microencapsulated rbASCs cultured in chondrogenic media expressed mRNAs for aggrecan, Type II collagen, and Type X collagen. Histologically, empty defects contained fibrous tissue; microbeads without cells were still present in defects and were surrounded by fibrous tissue; nondegradable beads with rbASCs initiated cartilage regeneration; degradable microbeads with cells produced immature bone-like tissue, also demonstrated by microCT; and autografts appeared as normal auricular cartilage but were not fully integrated with the tissue surrounding the defect. Elastin, the hallmark of auricular cartilage, was not evident in the neocartilage. This delivery system offers the potential for regeneration of auricular cartilage, but vascularity of the treatment site and use of factors that induce elastin must be considered.


Asunto(s)
Tejido Adiposo/metabolismo , Células Inmovilizadas , Cartílago Auricular , Regeneración , Trasplante de Células Madre , Células Madre/metabolismo , Tejido Adiposo/patología , Animales , Células Inmovilizadas/metabolismo , Células Inmovilizadas/patología , Células Inmovilizadas/trasplante , Cartílago Auricular/lesiones , Cartílago Auricular/patología , Cartílago Auricular/fisiología , Conejos , Células Madre/patología
3.
Biomaterials ; 34(33): 8172-84, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23906513

RESUMEN

Cell-based therapies have potential for tissue regeneration but poor delivery methods lead to low viability or dispersal of cells from target sites, limiting clinical utility. Here, we developed a degradable and injectable hydrogel to deliver stem cells for bone regeneration. Alginate microbeads <200 µm are injectable, persist at implantation sites and contain viable cells, but do not readily degrade in-vivo. We hypothesized that controlled release of rat adipose-derived stem cells (ASCs) from alginate microbeads can be achieved by incorporating alginate-lyase in the hydrogel. Microbeads were formed using high electrostatic potential. Controlled degradation was achieved through direct combination of alginate-lyase and alginate at 4 °C. Results showed that microbead degradation and cell release depended on the alginate-lyase to alginate ratio. Viability of released cells ranged from 87% on day 2 to 71% on day 12. Monolayer cultures of released ASCs grown in osteogenic medium produced higher levels of osteocalcin and similar levels of other soluble factors as ASCs that were neither previously encapsulated nor exposed to alginate-lyase. Bmp2, Fgf2, and Vegfa mRNA in released cells were also increased. Thus, this delivery system allows for controlled release of viable cells and can modulate their downstream osteogenic factor production.


Asunto(s)
Alginatos/química , Microesferas , Células Madre/citología , Ingeniería de Tejidos/métodos , Tejido Adiposo/citología , Animales , Supervivencia Celular , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Etiquetado Corte-Fin in Situ , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA