Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 226(Suppl_1)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36779312

RESUMEN

Anthropogenic climate change and pollution are impacting environments across the globe. This Review summarises the potential impact of such anthropogenic effects on animal tissue mechanics, given the consequences for animal locomotor performance and behaviour. More specifically, in light of current literature, this Review focuses on evaluating the acute and chronic effects of temperature on the mechanical function of muscle tissues. For ectotherms, maximal muscle performance typically occurs at temperatures approximating the natural environment of the species. However, species vary in their ability to acclimate to chronic changes in temperature, which is likely to have longer-term effects on species range. Some species undergo periods of dormancy to avoid extreme temperature or drought. Whilst the skeletal muscle of such species generally appears to be adapted to minimise muscle atrophy and maintain performance for emergence from dormancy, the increased occurrence of extreme climatic conditions may reduce the survival of individuals in such environments. This Review also considers the likely impact of anthropogenic pollutants, such as hormones and heavy metals, on animal tissue mechanics, noting the relative paucity of literature directly investigating this key area. Future work needs to determine the direct effects of anthropogenic environmental changes on animal tissues and related changes in locomotor performance and behaviour, including accounting for currently unknown interactions between environmental factors, e.g. temperature and pollutants.


Asunto(s)
Efectos Antropogénicos , Contaminantes Ambientales , Animales , Ambiente , Contaminación Ambiental , Adaptación Fisiológica , Cambio Climático , Temperatura
2.
J Exp Biol ; 226(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37293931

RESUMEN

Each parent can influence offspring phenotype via provisioning of the zygote or sex-specific DNA methylation. Transgenerational plasticity may therefore depend on the environmental conditions experienced by each parent. We tested this hypothesis by conducting a fully factorial experiment across three generations of guppies (Poecilia reticulata), determining the effects of warm (28°C) and cold (21°C) thermal backgrounds of mothers and fathers on mass and length, and thermal performance (sustained and sprint swimming speeds, citrate synthase and lactate dehydrogenase activities; 18, 24, 28, 32 and 36°C test temperatures) of sons and daughters. Offspring sex was significant for all traits except for sprint speed. Warmer mothers produced sons and daughters with reduced mass and length, and warmer fathers produced shorter sons. Sustained swimming speed (Ucrit) of male offspring was greatest when both parents were raised at 28°C, and warmer fathers produced daughters with greater Ucrit. Similarly, warmer fathers produced sons and daughters with greater metabolic capacity. We show that the thermal variation experienced by parents can modify offspring phenotype, and that predicting the impacts of environmental change on populations would require knowledge of the thermal background of each mother and father, particularly where sexes are spatially segregated.


Asunto(s)
Madres , Poecilia , Femenino , Animales , Masculino , Humanos , Núcleo Familiar , Temperatura , Fenotipo , Padre
3.
Proc Biol Sci ; 289(1967): 20212077, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-35078359

RESUMEN

Energetic cost of growth determines how much food-derived energy is needed to produce a given amount of new biomass and thereby influences energy transduction between trophic levels. Growth and development are regulated by hormones and are therefore sensitive to changes in temperature and environmental endocrine disruption. Here, we show that the endocrine disruptor bisphenol A (BPA) at an environmentally relevant concentration (10 µgl-1) decreased fish (Danio rerio) size at 30°C water temperature. Under the same conditions, it significantly increased metabolic rates and the energetic cost of growth across development. By contrast, BPA decreased the cost of growth at cooler temperatures (24°C). BPA-mediated changes in cost of growth were not associated with mitochondrial efficiency (P/O ratios (i.e. adenosine diphosphate (ADP) used/oxygen consumed) and respiratory control ratios) although BPA did increase mitochondrial proton leak. In females, BPA decreased age at maturity at 24°C but increased it at 30°C, and it decreased the gonadosomatic index suggesting reduced investment into reproduction. Our data reveal a potentially serious emerging problem: increasing water temperatures resulting from climate warming together with endocrine disruption from plastic pollution can impact animal growth efficiency, and hence the dynamics and resilience of animal populations and the services these provide.


Asunto(s)
Disruptores Endocrinos , Plásticos , Animales , Compuestos de Bencidrilo , Femenino , Reproducción , Agua , Pez Cebra/fisiología
4.
J Exp Biol ; 225(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35254445

RESUMEN

Phenotypic plasticity of physiological functions enables rapid responses to changing environments and may thereby increase the resilience of organisms to environmental change. Here, we argue that the principal hallmarks of life itself, self-replication and maintenance, are contingent on the plasticity of metabolic processes ('metabolic plasticity'). It is likely that the Last Universal Common Ancestor (LUCA), 4 billion years ago, already possessed energy-sensing molecules that could adjust energy (ATP) production to meet demand. The earliest manifestation of metabolic plasticity, switching cells from growth and storage (anabolism) to breakdown and ATP production (catabolism), coincides with the advent of Darwinian evolution. Darwinian evolution depends on reliable translation of information from information-carrying molecules, and on cell genealogy where information is accurately passed between cell generations. Both of these processes create fluctuating energy demands that necessitate metabolic plasticity to facilitate replication of genetic material and (proto)cell division. We propose that LUCA possessed rudimentary forms of these capabilities. Since LUCA, metabolic networks have increased in complexity. Generalist founder enzymes formed the basis of many derived networks, and complexity arose partly by recruiting novel pathways from the untapped pool of reactions that are present in cells but do not have current physiological functions (the so-called 'underground metabolism'). Complexity may thereby be specific to environmental contexts and phylogenetic lineages. We suggest that a Boolean network analysis could be useful to model the transition of metabolic networks over evolutionary time. Network analyses can be effective in modelling phenotypic plasticity in metabolic functions for different phylogenetic groups because they incorporate actual biochemical regulators that can be updated as new empirical insights are gained.


Asunto(s)
Adaptación Fisiológica , Adenosina Trifosfato , Evolución Biológica , Filogenia
5.
J Exp Biol ; 225(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35942859

RESUMEN

Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.


Asunto(s)
Aclimatación , Contaminantes Ambientales , Aclimatación/fisiología , Animales , Ecosistema , Metabolismo Energético/fisiología , Mitocondrias , Contracción Muscular/fisiología
6.
J Exp Biol ; 225(6)2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35179603

RESUMEN

Potentially negative effects of thermal variation on physiological functions may be modulated by compensatory responses, but their efficacy depends on the time scale of phenotypic adjustment relative to the rate of temperature change. Increasing temperatures in particular can affect mitochondrial bioenergetics and rates of reactive oxygen species (ROS) production. Our aim was to test whether different rates of temperature increase affect mitochondrial bioenergetics and modulate oxidative stress. We exposed zebrafish (Danio rerio) to warming from 20°C to 28°C over 3, 6, 24 or 48 h, and compared these with a control group that was kept at constant 20°C. Fish exposed to the fastest (3 h) and slowest (48 h) rates of warming had significantly higher rates of H2O2 production relative to the control treatment, and the proportion of O2 converted to H2O2 (H2O2/O2 ratio) was significantly greater in these groups. However, ROS production was not paralleled by differences in mitochondrial substrate oxidation rates, leak respiration rates or coupling (respiratory control ratios). Increased rates of ROS production did not lead to damage of proteins or membranes, which may be explained by a moderate increase in catalase activity at the fastest, but not the slowest, rate of warming. The increase in ROS production at the slowest rate of warming indicates that even seemingly benign environments may be stressful. Understanding how animals respond to different rates of temperature change is important, because the rate determines the time period for phenotypic adjustments and it also alters the environmental thermal signal that triggers compensatory pathways.


Asunto(s)
Peróxido de Hidrógeno , Pez Cebra , Animales , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno
7.
BMC Biol ; 19(1): 11, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33478487

RESUMEN

BACKGROUND: Thermal plasticity is pivotal for evolution in changing climates and in mediating resilience to its potentially negative effects. The efficacy to respond to environmental change depends on underlying mechanisms. DNA methylation induced by DNA methyltransferase 3 enzymes in the germline or during early embryonic development may be correlated with responses to environmental change. This developmental plasticity can interact with reversible acclimation within adult organisms, which would increase the speed of response and could alleviate potential mismatches between parental or early embryonic environments and those experienced at later life stages. Our aim was to determine whether there is a causative relationship between DNMT3 enzyme and developmental thermal plasticity and whether either or both interact with short-term acclimation to alter fitness and thermal responses in zebrafish (Danio rerio). RESULTS: We developed a novel DNMT3a knock-out model to show that sequential knock-out of DNA methyltransferase 3a isoforms (DNMT3aa-/- and DNMT3aa-/-ab-/-) additively decreased survival and increased deformities when cold developmental temperatures in zebrafish offspring mismatched warm temperatures experienced by parents. Interestingly, short-term cold acclimation of parents before breeding rescued DNMT3a knock-out offspring by restoring survival at cold temperatures. DNMT3a knock-out genotype interacted with developmental temperatures to modify thermal performance curves in offspring, where at least one DNMT3a isoform was necessary to buffer locomotion from increasing temperatures. The thermal sensitivity of citrate synthase activity, an indicator of mitochondrial density, was less severely affected by DNMT3a knock-out, but there was nonetheless a significant interaction between genotype and developmental temperatures. CONCLUSIONS: Our results show that DNMT3a regulates developmental thermal plasticity and that the phenotypic effects of different DNMT3a isoforms are additive. However, DNMT3a interacts with other mechanisms, such as histone (de)acetylation, induced during short-term acclimation to buffer phenotypes from environmental change. Interactions between these mechanisms make phenotypic compensation for climate change more efficient and make it less likely that thermal plasticity incurs a cost resulting from environmental mismatches.


Asunto(s)
Adaptación Fisiológica/genética , Cambio Climático , ADN (Citosina-5-)-Metiltransferasas/genética , Proteínas de Pez Cebra/genética , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/crecimiento & desarrollo , Animales Modificados Genéticamente/fisiología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Femenino , Masculino , Fenotipo , Termotolerancia/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/metabolismo
8.
Am J Physiol Regul Integr Comp Physiol ; 319(3): R296-R314, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697655

RESUMEN

The present study aimed to simultaneously examine the age-related, muscle-specific, sex-specific, and contractile mode-specific changes in isolated mouse skeletal muscle function and morphology across multiple ages. Measurements of mammalian muscle morphology, isometric force and stress (force/cross-sectional area), absolute and normalized (power/muscle mass) work-loop power across a range of contractile velocities, fatigue resistance, and myosin heavy chain (MHC) isoform concentration were measured in 232 isolated mouse (CD-1) soleus, extensor digitorum longus (EDL), and diaphragm from male and female animals aged 3, 10, 30, 52, and 78 wk. Aging resulted in increased body mass and increased soleus and EDL muscle mass, with atrophy only present for female EDL by 78 wk despite no change in MHC isoform concentration. Absolute force and power output increased up to 52 wk and to a higher level for males. A 23-36% loss of isometric stress exceeded the 14-27% loss of power normalized to muscle mass between 10 wk and 52 wk, although the loss of normalized power between 52 and 78 wk continued without further changes in stress (P > 0.23). Males had lower power normalized to muscle mass than females by 78 wk, with the greatest decline observed for male soleus. Aging did not cause a shift toward slower contractile characteristics, with reduced fatigue resistance observed in male EDL and female diaphragm. Our findings show that the loss of muscle quality precedes the loss of absolute performance as CD-1 mice age, with the greatest effect seen in male soleus, and in most instances without muscle atrophy or an alteration in MHC isoforms.


Asunto(s)
Envejecimiento/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Atrofia Muscular/fisiopatología , Animales , Diafragma/fisiopatología , Ratones , Fatiga Muscular/fisiología , Enfermedades Musculares/fisiopatología
9.
Glob Chang Biol ; 26(7): 3821-3833, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436328

RESUMEN

Plastic pollution is a global environmental concern. In particular, the endocrine-disrupting chemical bisphenol A (BPA) is nearly ubiquitous in aquatic environments globally, and it continues to be produced and released into the environment in large quantities. BPA disrupts hormone signalling and can thereby have far-reaching physiological and ecological consequences. However, it is not clear whether BPA has consistent effects across biological traits and phylogenetic groups. Hence, the aim of this study was to establish the current state of knowledge of the effect of BPA in aquatic organisms. We show that overall BPA exposure affected aquatic organisms negatively. It increased abnormalities, altered behaviour and had negative effects on the cardiovascular system, development, growth and survival. Early life stages were the most sensitive to BPA exposure in invertebrates and vertebrates, and invertebrates and amphibians seem to be particularly affected. These data provide a context for management efforts in the face of increasing plastic pollution. However, data availability is highly biased with respect to taxonomic groups and traits studies, and in the geographical distribution of sample collection. The latter is the case for both measurements of the biological responses and assessing pollution levels in water ways. Future research effort should be directed towards biological systems, such as studying endocrine disruption directly, and geographical areas (particularly in Africa and Asia) which we identify to be currently undersampled.


Asunto(s)
Organismos Acuáticos , Contaminantes Ambientales , África , Animales , Asia , Compuestos de Bencidrilo , Fenoles , Filogenia , Plásticos
10.
J Exp Biol ; 223(Pt 18)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32680901

RESUMEN

In honeybees there are three alleles of cytosolic malate dehydrogenase gene: F, M and S. Allele frequencies are correlated with environmental temperature, suggesting that the alleles have temperature-dependent fitness benefits. We determined the enzyme activity of each allele across a range of temperatures in vitro The F and S alleles have higher activity and are less sensitive to high temperatures than the M allele, which loses activity after incubation at temperatures found in the thorax of foraging bees in hot climates. Next, we predicted the protein structure of each allele and used molecular dynamics simulations to investigate their molecular flexibility. The M allozyme is more flexible than the S and F allozymes at 50°C, suggesting a plausible explanation for its loss of activity at high temperatures, and has the greatest structural flexibility at 15°C, suggesting that it can retain some enzyme activity at cooler temperatures. MM bees recovered from 2 h of cold narcosis significantly better than all other genotypes. Combined, these results explain clinal variation in malate dehydrogenase allele frequencies in the honeybee at the molecular level.


Asunto(s)
Malato Deshidrogenasa , Alelos , Animales , Abejas/genética , Frecuencia de los Genes , Genotipo , Malato Deshidrogenasa/genética , Temperatura
11.
J Fish Biol ; 97(2): 328-340, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32441327

RESUMEN

Environmental signals act primarily on physiological systems, which then influence higher-level functions such as movement patterns and population dynamics. Increases in average temperature and temperature variability associated with global climate change are likely to have strong effects on fish physiology and thereby on populations and fisheries. Here we review the principal mechanisms that transduce temperature signals and the physiological responses to those signals in fish. Temperature has a direct, thermodynamic effect on biochemical reaction rates. Nonetheless, plastic responses to longer-term thermal signals mean that fishes can modulate their acute thermal responses to compensate at least partially for thermodynamic effects. Energetics are particularly relevant for growth and movement, and therefore for fisheries, and temperature can have pronounced effects on energy metabolism. All energy (ATP) production is ultimately linked to mitochondria, and temperature has pronounced effects on mitochondrial efficiency and maximal capacities. Mitochondria are dependent on oxygen as the ultimate electron acceptor so that cardiovascular function and oxygen delivery link environmental inputs with energy metabolism. Growth efficiency, that is the conversion of food into tissue, changes with temperature, and there are indications that warmer water leads to decreased conversion efficiencies. Moreover, movement and migration of fish relies on muscle function, which is partially dependent on ATP production but also on intracellular calcium cycling within the myocyte. Neuroendocrine processes link environmental signals to regulated responses at the level of different tissues, including muscle. These physiological processes within individuals can scale up to population responses to climate change. A mechanistic understanding of thermal responses is essential to predict the vulnerability of species and populations to climate change.


Asunto(s)
Cambio Climático , Explotaciones Pesqueras/tendencias , Peces/fisiología , Calor , Animales , Metabolismo Energético , Dinámica Poblacional
12.
J Exp Biol ; 222(Pt 9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30962281

RESUMEN

The energy used to move a given distance (cost of transport; CoT) varies significantly between individuals of the same species. A lower CoT allows animals to allocate more of their energy budget to growth and reproduction. A higher CoT may cause animals to adjust their movement across different environmental gradients to reduce energy allocated to movement. The aim of this project was to determine whether CoT is a repeatable trait within individuals, and to determine its physiological causes and ecological consequences. We found that CoT is a repeatable trait in zebrafish (Danio rerio). We rejected the hypothesis that mitochondrial efficiency (P/O ratios) predicted CoT. We also rejected the hypothesis that CoT is modulated by temperature acclimation, exercise training or their interaction, although CoT increased with increasing acute test temperature. There was a weak but significant negative correlation between CoT and dispersal, measured as the number of exploration decisions made by fish, and the distance travelled against the current in an artificial stream. However, CoT was not correlated with the voluntary speed of fish moving against the current. The implication of these results is that CoT reflects a fixed physiological phenotype of an individual, which is not plastic in response to persistent environmental changes. Consequently, individuals may have fundamentally different energy budgets as they move across environments, and may adjust movement patterns as a result of allocation trade-offs. It was surprising that mitochondrial efficiency did not explain differences in CoT, and our working hypothesis is that the energetics of muscle contraction and relaxation may determine CoT. The increase in CoT with increasing acute environmental temperature means that warming environments will increase the proportion of the energy budget allocated to locomotion unless individuals adjust their movement patterns.


Asunto(s)
Metabolismo Energético/fisiología , Calor , Mitocondrias/fisiología , Natación/fisiología , Pez Cebra/fisiología , Animales , Distribución Aleatoria
13.
J Exp Biol ; 221(Pt 13)2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29980597

RESUMEN

Obesity can cause a decline in contractile function of skeletal muscle, thereby reducing mobility and promoting obesity-associated health risks. We reviewed the literature to establish the current state-of-knowledge of how obesity affects skeletal muscle contraction and relaxation. At a cellular level, the dominant effects of obesity are disrupted calcium signalling and 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. As a result, there is a shift from slow to fast muscle fibre types. Decreased AMPK activity promotes the class II histone deacetylase (HDAC)-mediated inhibition of the myocyte enhancer factor 2 (MEF2). MEF2 promotes slow fibre type expression, and its activity is stimulated by the calcium-dependent phosphatase calcineurin. Obesity-induced attenuation of calcium signalling via its effects on calcineurin, as well as on adiponectin and actinin affects excitation-contraction coupling and excitation-transcription coupling in the myocyte. These molecular changes affect muscle contractile function and phenotype, and thereby in vivo and in vitro muscle performance. In vivo, obesity can increase the absolute force and power produced by increasing the demand on weight-supporting muscle. However, when normalised to body mass, muscle performance of obese individuals is reduced. Isolated muscle preparations show that obesity often leads to a decrease in force produced per muscle cross-sectional area, and power produced per muscle mass. Obesity and ageing have similar physiological consequences. The synergistic effects of obesity and ageing on muscle function may exacerbate morbidity and mortality. Important future research directions include determining: the relationship between time course of weight gain and changes in muscle function; the relative effects of weight gain and high-fat diet feeding per se; the effects of obesity on muscle function during ageing; and if the effects of obesity on muscle function are reversible.


Asunto(s)
Contracción Muscular/fisiología , Músculo Esquelético/fisiología , Obesidad/fisiopatología , Animales , Humanos , Músculo Esquelético/fisiopatología
14.
Am J Physiol Regul Integr Comp Physiol ; 313(1): R35-R43, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28404582

RESUMEN

Aerobic exercise has a positive impact on animals by enhancing skeletal muscle function and locomotor performance. Responses of skeletal muscle to exercise involve changes in energy metabolism, calcium handling, and the composition of contractile protein isoforms, which together influence contractile properties. Histone deacetylases (HDAC) can cause short-term changes in gene expression and may thereby mediate plasticity in contractile properties of skeletal muscle in response to exercise. The aim of this project was to determine (in zebrafish, Danio rerio) the traits that mediate interindividual differences in sustained and sprint performance and to determine whether inhibiting class I and II HDACs mediates exercise-induced changes in these traits. High sustained performers had greater aerobic metabolic capacity [citrate synthase (CS) activity], calcium handling capacity [sarco/endoplasmic reticulum ATPase (SERCA) activity], and slow contractile protein concentration [slow myosin heavy chain (MHC)] compared with low performers. High sprint performers had lower CS activity and slow MHC concentrations compared with low performers, but there were no significant differences in lactate dehydrogenase activity or fast MHC concentrations. Four weeks of aerobic exercise training increased sustained performance, CS activity, SERCA activity, and slow MHC concentration. Inhibiting class I and II HDACs increased slow MHC concentration in untrained fish but not in trained fish. However, inhibiting HDACs reduced SERCA activity, which was paralleled by a reduction in sustained and sprint performance. The regulation of muscle phenotypes by HDACs could be a mechanism underlying the adaptation of sustained locomotor performance to different environmental conditions, and may therefore be of therapeutic and ecological significance.


Asunto(s)
Histona Desacetilasas/metabolismo , Músculo Esquelético/fisiología , Condicionamiento Físico Animal/fisiología , Animales , Regulación Enzimológica de la Expresión Génica , Histona Desacetilasas/genética , Actividad Motora , Cadenas Pesadas de Miosina/metabolismo , Natación , Pez Cebra
15.
J Exp Biol ; 220(Pt 4): 582-587, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202648

RESUMEN

Ultraviolet B radiation (UV-B) is an important environmental driver that can affect locomotor performance negatively by inducing production of reactive oxygen species (ROS). Prolonged regular exercise increases antioxidant activities, which may alleviate the negative effects of UV-B-induced ROS. Animals naturally performing exercise, such as humans performing regular exercise or fish living in flowing water, may therefore be more resilient to the negative effects of UV-B. We tested this hypothesis in a fully factorial experiment, where we exposed mosquitofish (Gambusia holbrooki) to UV-B and control (no UV-B) conditions in flowing and still water. We show that fish exposed to UV-B and kept in flowing water had increased sustained swimming performance (Ucrit), increased antioxidant defences (catalase activity and glutathione concentrations) and reduced cellular damage (lipid peroxidation and protein carbonyl concentrations) compared with fish in still water. There was no effect of UV-B or water flow on resting or maximal rates of oxygen consumption. Our results show that environmental water flow can alleviate the negative effects of UV-B-induced ROS by increasing defence mechanisms. The resultant reduction in ROS-induced damage may contribute to maintain locomotor performance. Hence, the benefits of regular exercise are 'transferred' to improve resilience to the negative impacts of UV-B. Ecologically, the mechanistic link between responses to different habitat characteristics can determine the success of animals. These dynamics have important ecological connotations when river or stream flow changes as a result of weather patterns, climate or human modifications.


Asunto(s)
Ciprinodontiformes/fisiología , Estrés Oxidativo/efectos de la radiación , Natación , Rayos Ultravioleta/efectos adversos , Animales , Antioxidantes/metabolismo , Metabolismo Basal/efectos de la radiación , Catalasa/metabolismo , Ecosistema , Proteínas de Peces/metabolismo , Glutatión/metabolismo , Peroxidación de Lípido/efectos de la radiación , Masculino , Consumo de Oxígeno/efectos de la radiación , Factores Protectores , Carbonilación Proteica/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
16.
J Exp Biol ; 220(Pt 20): 3733-3741, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28819051

RESUMEN

Decreased skeletal muscle performance with increasing age is strongly associated with reduced mobility and quality of life. Increased physical activity is a widely prescribed method of reducing the detrimental effects of ageing on skeletal muscle contractility. The present study used isometric and work loop testing protocols to uniquely investigate the effects of 8 weeks of voluntary wheel running on the contractile performance of isolated dynapenic soleus and diaphragm muscles of 38-week-old CD1 mice. When compared with untrained controls, voluntary wheel running induced significant improvements in maximal isometric stress and work loop power, a reduced resistance to fatigue, but greater cumulative work during fatiguing work loop contractions in isolated muscle. These differences occurred without appreciable changes in lactate dehydrogenase, citrate synthase, sarco-endoplasmic reticulum ATPase or myosin heavy chain expression synonymous with this form of training in younger rodent models. Despite the given improvement in contractile performance, the average running distance significantly declined over the course of the training period, indicating that this form of training may not be sufficient to fully counteract the longer-term ageing-induced decline in skeletal muscle contractile performance. Although these results indicate that regular low-intensity physical activity may be beneficial in offsetting the age-related decline in skeletal muscle contractility, future work focusing on the maintenance of a healthy body mass with increasing age and its effects on myosin-actin cross-bridge kinetics and Ca2+ handling is needed to clarify the mechanisms causing the improved contractile performance in trained dynapenic skeletal muscle.


Asunto(s)
Envejecimiento , Diafragma/fisiología , Actividad Motora , Contracción Muscular , Músculo Esquelético/fisiología , Animales , Femenino , Ratones
17.
Am J Physiol Regul Integr Comp Physiol ; 311(3): R457-65, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27385733

RESUMEN

Central pathways regulate metabolic responses to cold in endotherms to maintain relatively stable internal core body temperatures. However, peripheral muscles routinely experience temperatures lower than core body temperature, so that it would be advantageous for peripheral tissues to respond to temperature changes independently from core body temperature regulation. Early developmental conditions can influence offspring phenotypes, and here we tested whether developing muscle can compensate locally for the effects of cold exposure independently from central regulation. Muscle myotubes originate from undifferentiated myoblasts that are laid down during embryogenesis. We show that in a murine myoblast cell line (C2C12), cold exposure (32°C) increased myoblast metabolic flux compared with 37°C control conditions. Importantly, myotubes that differentiated at 32°C compensated for the thermodynamic effects of low temperature by increasing metabolic rates, ATP production, and glycolytic flux. Myotube responses were also modulated by the temperatures experienced by "parent" myoblasts. Myotubes that differentiated under cold exposure increased activity of the AMP-stimulated protein kinase (AMPK), which may mediate metabolic changes in response cold exposure. Moreover, cold exposure shifted myosin heavy chains from slow to fast, presumably to overcome slower contractile speeds resulting from low temperatures. Adjusting thermal sensitivities locally in peripheral tissues complements central thermoregulation and permits animals to maintain function in cold environments. Muscle also plays a major metabolic role in adults, so that developmental responses to cold are likely to influence energy expenditure later in life.


Asunto(s)
Diferenciación Celular/fisiología , Respuesta al Choque por Frío/fisiología , Metabolismo Energético/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Termotolerancia/fisiología , Animales , Línea Celular , Frío , Ratones , Fibras Musculares Esqueléticas/clasificación , Fibras Musculares Esqueléticas/citología , Fenotipo
18.
J Exp Biol ; 219(Pt 18): 2806-2808, 2016 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-27401758

RESUMEN

Thyroid hormone is a key regulator of metabolism, and in zebrafish, hypothyroidism decreases sustained and burst swimming performance. These effects are accompanied by decreases in both metabolic scope and the activity of sarco-endoplasmic reticulum ATPase (SERCA) in zebrafish. Our aim was to determine whether thyroid hormone affects skeletal muscle contractile function directly and whether these effects are mediated by influencing SERCA activity. We show that hypothyroidism reduces sustained locomotor performance but not sprint performance in carp (Cyprinus carpio). We accept our hypothesis that hypothyroidism reduces force production in isolated skeletal muscle, when compared with the thyroid hormone T2, but we reject the hypothesis that this effect is mediated by influencing SERCA activity. Blocking SERCA activity with thapsigargin reduced muscle fatigue resistance, but hypothyroidism had no effect on fatigue. Hence, thyroid hormone plays a role in determining isolated skeletal muscle mechanics, but its effects are more likely to be mediated by mechanisms other than affecting SERCA activity.

19.
J Exp Biol ; 219(Pt 1): 96-102, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26567351

RESUMEN

Ultraviolet B radiation (UV-B) can reduce swimming performance by increasing reactive oxygen species (ROS) formation. High concentrations of ROS can damage mitochondria, resulting in reduced ATP production. ROS can also damage muscle proteins, thereby leading to impaired muscle contractile function. We have shown previously that UV-B exposure reduces locomotor performance in mosquitofish (Gambusia holbrooki) without affecting metabolic scope. Our aim was therefore to test whether UV-B influences swimming performance of mosquitofish by ROS-induced damage to muscle proteins without affecting mitochondrial function. In a fully factorial design, we exposed mosquitofish to UV-B and no-UV-B controls in combination with exposure to N-acetylcysteine (NAC) plus no-NAC controls. We used NAC, a precursor of glutathione, as an antioxidant to test whether any effects of UV-B on swimming performance were at least partly due to UV-B-induced ROS. UV-B significantly reduced critical sustained swimming performance and tail beat frequencies, and it increased ROS-induced damage (protein carbonyl concentrations and lipid peroxidation) in muscle. However, UV-B did not affect the activity of sarco-endoplasmic reticulum ATPase (SERCA), an enzyme associated with muscle calcium cycling and muscle relaxation. UV-B did not affect ADP phosphorylation (state 3) rates of mitochondrial respiration, and it did not alter the amount of ATP produced per atom of oxygen consumed (P:O ratio). However, UV-B reduced the mitochondrial respiratory control ratio. Under UV-B exposure, fish treated with NAC showed greater swimming performance and tail beat frequencies, higher glutathione concentrations, and lower protein carbonyl concentrations and lipid peroxidation than untreated fish. Tail beat amplitude was not affected by any treatment. Our results showed, firstly, that the effects of UV-B on locomotor performance were mediated by ROS and, secondly, that reduced swimming performance was not caused by impaired mitochondrial ATP production. Instead, reduced tail beat frequencies indicate that muscle of UV-B exposed fish were slower, which was likely to have been caused by slower contraction rates, because SERCA activities remained unaffected.


Asunto(s)
Ciprinodontiformes/fisiología , Músculo Esquelético/efectos de la radiación , Acetilcisteína/farmacología , Adenosina Trifosfato/metabolismo , Animales , Antioxidantes/farmacología , Peroxidación de Lípido , Mitocondrias/metabolismo , Contracción Muscular , Músculo Esquelético/fisiología , Fosforilación , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Natación , Rayos Ultravioleta
20.
J Exp Biol ; 219(Pt 11): 1625-31, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27252454

RESUMEN

Locomotor performance is closely related to fitness. However, in many ecological contexts, animals do not move at their maximal locomotor capacity, but adopt a voluntary speed that is lower than maximal. It is important to understand the mechanisms that underlie voluntary speed, because these determine movement patterns of animals across natural environments. We show that voluntary speed is a stable trait in zebrafish (Danio rerio), but there were pronounced differences between individuals in maximal sustained speed, voluntary speed and metabolic cost of locomotion. We accept the hypothesis that voluntary speed scales positively with maximal sustained swimming performance (Ucrit), but only in unfamiliar environments (1st minute in an open-field arena versus 10th minute) at high temperature (30°C). There was no significant effect of metabolic scope on Ucrit Contrary to expectation, we rejected the hypothesis that voluntary speed decreases with increasing metabolic cost of movement, except in familiar spatial (after 10 min of exploration) and thermal (24°C but not 18 or 30°C) environments. The implications of these data are that the energetic costs of exploration and dispersal in novel environments are higher than those for movement within familiar home ranges.


Asunto(s)
Metabolismo Energético/fisiología , Ambiente , Movimiento , Pez Cebra/fisiología , Aerobiosis , Animales , Metabolismo Basal/fisiología , Modelos Biológicos , Natación/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA