Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 27(68): 16871-16878, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34705303

RESUMEN

The substitution behavior of the monodentate Cl ligand of a series of ruthenium(II) terpyridine complexes (terpyridine (tpy)=2,2':6',2''-terpyridine) has been investigated. 1 H NMR kinetic experiments of the dissociation of the chloro ligand in D2 O for the complexes [Ru(tpy)(bpy)Cl]Cl (1, bpy=2,2'-bipyridine) and [Ru(tpy)(dppz)Cl]Cl (2, dppz=dipyrido[3,2-a:2',3'-c]phenazine) as well as the binuclear complex [Ru(bpy)2 (tpphz)Ru(tpy)Cl]Cl3 (3 b, tpphz=tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) were conducted, showing increased stability of the chloride ligand for compounds 2 and 3 due to the extended π-system. Compounds 1-5 (4=[Ru(tbbpy)2 (tpphz)Ru(tpy)Cl](PF6 )3 , 5=[Ru(bpy)2 (tpphz)Ru(tpy)(C3 H8 OS)/(H2 O)](PF6 )3 , tbbpy=4,4'-di-tert-butyl-2,2'-bipyridine) are tested for their ability to run water oxidation catalysis (WOC) using cerium(IV) as sacrificial oxidant. The WOC experiments suggest that the stability of monodentate (chloride) ligand strongly correlates to catalytic performance, which follows the trend 1>2>5≥3>4. This is also substantiated by quantum chemical calculations, which indicate a stronger binding for the chloride ligand based on the extended π-systems in compounds 2 and 3. Additionally, a theoretical model of the mechanism of the oxygen evolution of compounds 1 and 2 is presented; this suggests no differences in the elementary steps of the catalytic cycle within the bpy to the dppz complex, thus suggesting that differences in the catalytic performance are indeed based on ligand stability. Due to the presence of a photosensitizer and a catalytic unit, binuclear complexes 3 and 4 were tested for photocatalytic water oxidation. The bridging ligand architecture, however, inhibits the effective electron-transfer cascade that would allow photocatalysis to run efficiently. The findings of this study can elucidate critical factors in catalyst design.

2.
Chemistry ; 26(50): 11412-11416, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32212185

RESUMEN

Reactions of α,ß-unsaturated aromatic thioketones 1 (thiochalcones) with Fe3 (CO)12 leading to η4 -1-thia-1,3-diene iron tricarbonyl complexes 2, [FeFe] hydrogenase mimics 3, and the thiopyrane adduct 4 are described. Obtained products have been characterized by X-ray crystallography and by computational methods. Completely regio- and diastereoselective formation of the five-membered ring system in products 3, containing four stereogenic centers, can be explained by an unprecedented, stepwise (3+2)-cycloaddition of two thiochalcone molecules mediated by Fe3 (CO)12 . Quantum chemical calculations aimed at elucidation of the reaction mechanism, suggest that the formal (3+2)-cycloaddition proceeds via sequential intramolecular radical transfer events upon homolytic cleavage of one carbon-sulfur bond leading to a diradical intermediate.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122635, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-36996518

RESUMEN

Quantum chemical calculations have been carried out to elucidate the electronic structure as well as to draw structure-property relationships for a series of ferrocenyl hetaryl ketones by means of simulated NMR, IR and UV-vis spectra. In this series, the list of hetaryl groups included furan-2-yl, thiophen-2-yl, selenophen-2-yl, 1H-pyrrol-2-yl and N-methylpyrrol-2-yl. Density functional theory was employed to determine the ground-state properties of the five ketones while their excited-state properties were modeled using a broad range of theoretical methods, namely from time-dependent density functional theory to multiconfigurational and multireference ab initio approaches. The patterns in the 13C and 17O chemical shifts of the carbonyl group were explained by the geometrical twist of hetaryl rings and by the electronic parameters corresponding to π-bonds conjugation and group hardness. Furthermore, the corresponding 13C and 17O shielding constants were analyzed in terms of both their dia/paramagnetic and Lewis/non-Lewis contributions within the framework of natural chemical shielding theory. The pattern in the vibrational frequency of the carbonyl bond was connected with changes in its bond length and bond order. It was established that the electronic absorption spectra of the studied ketones are largely characterized by low-intensity d â†’ π* transitions in the visible region and the dominant high-intensity π â†’ π* transition in the UV region. Finally, the theoretical methods best suited for modeling the excited-state properties of such ketones were designated.

4.
Nat Chem ; 14(5): 500-506, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35132222

RESUMEN

The molecular apparatus behind biological photosynthesis retains its long-term functionality through enzymatic repair. However, bioinspired molecular devices designed for artificial photosynthesis, consisting of a photocentre, a bridging ligand and a catalytic centre, can become unstable and break down when their individual modules are structurally compromised, halting their overall functionality and operation. Here we report the active repair of such an artificial photosynthetic molecular device, leading to complete recovery of catalytic activity. We have identified the hydrogenation of the bridging ligand, which inhibits the light-driven electron transfer between the photocentre and catalytic centre, as the deactivation mechanism. As a means of repair, we used the light-driven generation of singlet oxygen, catalysed by the photocentre, to enable the oxidative dehydrogenation of the bridging unit, which leads to the restoration of photocatalytic hydrogen formation.


Asunto(s)
Luz , Fotosíntesis , Transporte de Electrón , Hidrógeno , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA