Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Neurosci ; 15(3): 181-92, 2014 03.
Artículo en Inglés | MEDLINE | ID: mdl-24552786

RESUMEN

Recent studies using transgenic mice lacking NMDA receptors in the hippocampus challenge the long-standing hypothesis that hippocampal long-term potentiation-like mechanisms underlie the encoding and storage of associative long-term spatial memories. However, it may not be the synaptic plasticity-dependent memory hypothesis that is wrong; instead, it may be the role of the hippocampus that needs to be re-examined. We present an account of hippocampal function that explains its role in both memory and anxiety.


Asunto(s)
Ansiedad/fisiopatología , Hipocampo/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Percepción Espacial/fisiología , Sinapsis/fisiología , Animales , Conducta Animal/fisiología , Hipocampo/fisiopatología , Ratones , Ratones Noqueados , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología
2.
Eur J Neurosci ; 45(7): 912-921, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28186680

RESUMEN

Group II metabotropic glutamate receptor agonists have been suggested as potential anti-psychotics, at least in part, based on the observation that the agonist LY354740 appeared to rescue the cognitive deficits caused by non-competitive N-methyl-d-aspartate receptor (NMDAR) antagonists, including spatial working memory deficits in rodents. Here, we tested the ability of LY354740 to rescue spatial working memory performance in mice that lack the GluA1 subunit of the AMPA glutamate receptor, encoded by Gria1, a gene recently implicated in schizophrenia by genome-wide association studies. We found that LY354740 failed to rescue the spatial working memory deficit in Gria1-/- mice during rewarded alternation performance in the T-maze. In contrast, LY354740 did reduce the locomotor hyperactivity in these animals to a level that was similar to controls. A similar pattern was found with the dopamine receptor antagonist haloperidol, with no amelioration of the spatial working memory deficit in Gria1-/- mice, even though the same dose of haloperidol reduced their locomotor hyperactivity. These results with LY354740 contrast with the rescue of spatial working memory in models of glutamatergic hypofunction using non-competitive NMDAR antagonists. Future studies should determine whether group II mGluR agonists can rescue spatial working memory deficits with other NMDAR manipulations, including genetic models and other pharmacological manipulations of NMDAR function.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Antagonistas de Dopamina/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Haloperidol/farmacología , Hipercinesia/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Receptores AMPA/genética , Animales , Compuestos Bicíclicos con Puentes/uso terapéutico , Antagonistas de Dopamina/uso terapéutico , Agonistas de Aminoácidos Excitadores/uso terapéutico , Femenino , Haloperidol/uso terapéutico , Hipercinesia/tratamiento farmacológico , Hipercinesia/fisiopatología , Locomoción/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/metabolismo
3.
Neurobiol Learn Mem ; 135: 83-90, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27417577

RESUMEN

Spatial working memory (SWM) is an essential cognitive function important for survival in a competitive environment. In rodents SWM requires an intact hippocampus and SWM expression is impaired in mice lacking the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA1 (Gria1-/- mice). Here we used viral gene transfer to show that re-expression of GluA1 in the hippocampus can affect the behavioral performance of GluA1 deficient mice. We found that Gria1-/- mice with hippocampus-specific rescue of GluA1 expression (Gria1Hpc mice) are more anxious, less hyperactive and only partly impaired in SWM expression in the Y-maze spatial novelty preference paradigm compared to Gria1-/- mice. However, Gria1Hpc mice still express SWM performance deficits when tested in the rewarded alternation T-maze task. Thus, the restoration of hippocampal function affects several behaviors of GluA1 deficient mice - including SWM expression - in different tasks. The virus-mediated GluA1 expression in Gria1-/- mice is not sufficient for a comprehensive SWM restoration, suggesting that both hippocampal as well as extra-hippocampal GluA1-containing AMPA receptors contribute to SWM.


Asunto(s)
Hipocampo/metabolismo , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/fisiopatología , Memoria a Corto Plazo/fisiología , Receptores AMPA/metabolismo , Memoria Espacial/fisiología , Animales , Conducta Animal/fisiología , Técnicas de Transferencia de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores AMPA/deficiencia
4.
Neurobiol Dis ; 52: 160-7, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23262314

RESUMEN

Glutamate receptor dependent synaptic plasticity plays an important role in the pathophysiology of depression. Hippocampal samples from clinically depressed patients display reduced mRNA levels for GluA1, a major subunit of AMPA receptors. Moreover, activation and synaptic incorporation of GluA1-containing AMPA receptors are required for the antidepressant-like effects of NMDA receptor antagonists. These findings argue that GluA1-dependent synaptic plasticity might be critically involved in the expression of depression. Using an animal model of depression, we demonstrate that global or hippocampus-selective deletion of GluA1 impairs expression of experience-dependent behavioral despair. This impairment is mediated by the interaction of GluA1 with PDZ-binding domain proteins, as deletion of the C-terminal leucine alone is sufficient to replicate the behavioral phenotype. Our results provide evidence for a significant role of hippocampal GluA1-containing AMPA receptors and their PDZ-interaction in experience-dependent expression of behavioral despair and link mechanisms of hippocampal synaptic plasticity with behavioral expression of depression.


Asunto(s)
Conducta Animal/fisiología , Hipocampo/metabolismo , Aprendizaje/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Dominios PDZ/fisiología , Receptores AMPA/genética , Animales , Desamparo Adquirido , Ratones , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Receptores AMPA/metabolismo , Natación
5.
Neurobiol Dis ; 56: 66-73, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23607937

RESUMEN

To investigate whether alterations in RNA editing (an enzymatic base-specific change to the RNA sequence during primary transcript formation from DNA) of neurotransmitter receptor genes and of transmembrane ion channel genes play a role in human temporal lobe epilepsy (TLE), this exploratory study analyzed 14 known cerebral editing sites in RNA extracted from the brain tissue of 41 patients who underwent surgery for mesial TLE, 23 with hippocampal sclerosis (MTLE+HS). Because intraoperatively sampled RNA cannot be obtained from healthy controls and the best feasible control is identically sampled RNA from patients with a clinically shorter history of epilepsy, the primary aim of the study was to assess the correlation between epilepsy duration and RNA editing in the homogenous group of MTLE+HS. At the functionally relevant I/V site of the voltage-gated potassium channel Kv1.1, an inverse correlation of RNA editing was found with epilepsy duration (r=-0.52, p=0.01) but not with patient age at surgery, suggesting a specific association with either the epileptic process itself or its antiepileptic medication history. No significant correlations were found between RNA editing and clinical parameters at other sites within glutamate receptor or serotonin 2C receptor gene transcripts. An "all-or-none" (≥95% or ≤5%) editing pattern at most or all sites was discovered in 2 patients. As a secondary part of the study, RNA editing was also analyzed as in the previous literature where up to now, few single editing sites were compared with differently obtained RNA from inhomogenous patient groups and autopsies, and by measuring editing changes in our mouse model. The present screening study is first to identify an editing site correlating with a clinical parameter, and to also provide an estimate of the possible effect size at other sites, which is a prerequisite for power analysis needed in planning future studies.


Asunto(s)
ADN/genética , Epilepsia del Lóbulo Temporal/genética , Edición de ARN/fisiología , ARN/genética , Adolescente , Adulto , Animales , Electroencefalografía , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Humanos , Canal de Potasio Kv.1.1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores AMPA/genética , Adulto Joven
6.
Hippocampus ; 23(12): 1359-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23929622

RESUMEN

Spatial working memory (SWM), the ability to process and manipulate spatial information over a relatively short period of time, requires an intact hippocampus, but also involves other forebrain nuclei in both in rodents and humans. Previous studies in mice showed that the molecular mechanism of SWM includes activation of AMPA receptors containing the GluA1 subunit (encoded by gria1) as GluA1 deletion in the whole brain (gria1(-/-)) results in strong SWM deficit. However, since these mice globally lack GluA1, the circuit mechanisms of GluA1 contribution to SWM remain unknown. In this study, by targeted expression of GluA1 containing AMPA receptors in the forebrain of gria1(-/-) mice or by removing GluA1 selectively from hippocampus of mice with "floxed" GluA1 alleles (gria1(fl/fl) ), we show that SWM requires GluA1 action in cortical circuits but is only partially dependent on GluA1-containing AMPA receptors in hippocampus. We further show that hippocampal GluA1 contribution to SWM is temporally restricted and becomes prominent at longer retention intervals (≥ 30 s). These findings provide a novel insight into the neural circuits required for SWM processing and argue that AMPA mediated signaling across forebrain and hippocampus differentially contribute to encoding of SWM.


Asunto(s)
Hipocampo/metabolismo , Memoria a Corto Plazo/fisiología , Prosencéfalo/metabolismo , Receptores AMPA/metabolismo , Percepción Espacial/fisiología , Animales , Condicionamiento Clásico/fisiología , Miedo/fisiología , Femenino , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/metabolismo , Fosfopiruvato Hidratasa/metabolismo , Receptores AMPA/genética , Técnicas Estereotáxicas
7.
J Biol Chem ; 286(21): 18614-22, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21467037

RESUMEN

ADAR2, an RNA editing enzyme that converts specific adenosines to inosines in certain pre-mRNAs, often leading to amino acid substitutions in the encoded proteins, is mainly expressed in brain. Of all ADAR2-mediated edits, a single one in the pre-mRNA of the AMPA receptor subunit GluA2 is essential for survival. Hence, early postnatal death of mice lacking ADAR2 is averted when the critical edit is engineered into both GluA2 encoding Gria2 alleles. Adar2(-/-)/Gria2(R/R) mice display normal appearance and life span, but the general phenotypic effects of global lack of ADAR2 have remained unexplored. Here we have employed the Adar2(-/-)/Gria2(R/R) mouse line, and Gria2(R/R) mice as controls, to study the phenotypic consequences of loss of all ADAR2-mediated edits except the critical one in GluA2. Our extended phenotypic analysis covering ∼320 parameters identified significant changes related to absence of ADAR2 in behavior, hearing ability, allergy parameters and transcript profiles of brain.


Asunto(s)
Adenosina Desaminasa/metabolismo , Edición de ARN/fisiología , Precursores del ARN/metabolismo , Adenosina Desaminasa/genética , Animales , Ratones , Ratones Noqueados , Especificidad de Órganos/fisiología , Precursores del ARN/genética , Proteínas de Unión al ARN , Receptores AMPA/genética , Receptores AMPA/metabolismo
8.
Learn Mem ; 18(3): 128-31, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21325433

RESUMEN

Deletion of the GluA1 AMPA receptor subunit selectively impairs short-term memory for spatial locations. We further investigated this deficit by examining memory for discrete nonspatial visual stimuli in an operant chamber. Unconditioned suppression of magazine responding to visual stimuli was measured in wild-type and GluA1 knockout mice. Wild-type mice showed less suppression to a stimulus that had been presented recently than to a stimulus that had not. GluA1 knockout mice, however, showed greater suppression to a recent stimulus than to a nonrecent stimulus. Thus, GluA1 is not necessary for encoding, but affects the way that short-term memory is expressed.


Asunto(s)
Condicionamiento Clásico/fisiología , Trastornos de la Memoria/genética , Memoria a Corto Plazo/fisiología , Receptores AMPA/deficiencia , Análisis de Varianza , Animales , Conducta Animal , Femenino , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Noqueados , Estimulación Luminosa/métodos , Factores de Tiempo
9.
Learn Mem ; 18(3): 181-90, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21378100

RESUMEN

Deletion of the GluA1 AMPA receptor subunit impairs short-term spatial recognition memory. It has been suggested that short-term recognition depends upon memory caused by the recent presentation of a stimulus that is independent of contextual-retrieval processes. The aim of the present set of experiments was to test whether the role of GluA1 extends to nonspatial recognition memory. Wild-type and GluA1 knockout mice were tested on the standard object recognition task and a context-independent recognition task that required recency-dependent memory. In a first set of experiments it was found that GluA1 deletion failed to impair performance on either of the object recognition or recency-dependent tasks. However, GluA1 knockout mice displayed increased levels of exploration of the objects in both the sample and test phases compared to controls. In contrast, when the time that GluA1 knockout mice spent exploring the objects was yoked to control mice during the sample phase, it was found that GluA1 deletion now impaired performance on both the object recognition and the recency-dependent tasks. GluA1 deletion failed to impair performance on a context-dependent recognition task regardless of whether object exposure in knockout mice was yoked to controls or not. These results demonstrate that GluA1 is necessary for nonspatial as well as spatial recognition memory and plays an important role in recency-dependent memory processes.


Asunto(s)
Receptores AMPA/genética , Reconocimiento en Psicología/fisiología , Animales , Conducta Exploratoria/fisiología , Femenino , Ratones , Ratones Noqueados
10.
J Neurosci ; 30(36): 11917-25, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20826656

RESUMEN

GluR2 is a subunit of the AMPA receptor, and the adenosine for the Q/R site of its pre-mRNA is converted to inosine (A-to-I conversion) by the enzyme called adenosine deaminase acting on RNA 2 (ADAR2). Failure of A-to-I conversion at this site affects multiple AMPA receptor properties, including the Ca(2+) permeability of the receptor-coupled ion channel, thereby inducing fatal epilepsy in mice (Brusa et al., 1995; Feldmeyer et al., 1999). In addition, inefficient GluR2 Q/R site editing is a disease-specific molecular dysfunction found in the motor neurons of sporadic amyotrophic lateral sclerosis (ALS) patients (Kawahara et al., 2004). Here, we generated genetically modified mice (designated as AR2) in which the ADAR2 gene was conditionally targeted in motor neurons using the Cre/loxP system. These AR2 mice showed a decline in motor function commensurate with the slow death of ADAR2-deficient motor neurons in the spinal cord and cranial motor nerve nuclei. Notably, neurons in nuclei of oculomotor nerves, which often escape degeneration in ALS, were not decreased in number despite a significant decrease in GluR2 Q/R site editing. All cellular and phenotypic changes in AR2 mice were prevented when the mice carried endogenous GluR2 alleles engineered to express edited GluR2 without ADAR2 activity (Higuchi et al., 2000). Thus, loss of ADAR2 activity causes AMPA receptor-mediated death of motor neurons.


Asunto(s)
Adenosina Desaminasa/deficiencia , Neuronas Motoras/fisiología , Edición de ARN/fisiología , Receptores AMPA/metabolismo , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Conducta Animal , Tronco Encefálico/citología , Calcio/metabolismo , Muerte Celular/genética , Modelos Animales de Enfermedad , Electromiografía/métodos , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Hipercinesia/genética , Hipercinesia/patología , Hipercinesia/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/fisiopatología , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN , Tiempo de Reacción/genética , Tiempo de Reacción/fisiología , Receptores AMPA/genética , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Médula Espinal/citología , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
11.
Nat Struct Mol Biol ; 13(1): 13-21, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16369484

RESUMEN

Adenosine deaminases acting on RNA (ADARs) are involved in editing of adenosine residues to inosine in double-stranded RNA (dsRNA). Although this editing recodes and alters functions of several mammalian genes, its most common targets are noncoding repeat sequences, indicating the involvement of this editing system in currently unknown functions other than recoding of protein sequences. Here we show that specific adenosine residues of certain microRNA (miRNA) precursors are edited by ADAR1 and ADAR2. Editing of pri-miR-142, the precursor of miRNA-142, expressed in hematopoietic tissues, resulted in suppression of its processing by Drosha. The edited pri-miR-142 was degraded by Tudor-SN, a component of RISC and also a ribonuclease specific to inosine-containing dsRNAs. Consequently, mature miRNA-142 expression levels increased substantially in ADAR1 null or ADAR2 null mice. Our results demonstrate a new function of RNA editing in the control of miRNA biogenesis.


Asunto(s)
Adenosina Desaminasa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Edición de ARN/genética , Procesamiento Postranscripcional del ARN , Adenosina Desaminasa/genética , Animales , Secuencia de Bases , Línea Celular , Humanos , Ratones , Ratones Noqueados , MicroARNs/química , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Unión al ARN , Ribonucleasa III/metabolismo , Bazo/metabolismo , Timo/metabolismo
12.
Mol Cell Biol ; 27(11): 4121-32, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17403907

RESUMEN

Alpha- and gamma-protocadherins (Pcdhs) are type I transmembrane receptors expressed predominantly in the central nervous system and located in part in synapses. They are transcribed from complex genomic loci, giving rise in the mouse to 14 alpha-Pcdh and 22 gamma-Pcdh isoforms consisting of variable domains, each encompassing the extracellular region, the transmembrane region, and part of the intracellular region harboring the alpha- or gamma-Pcdh-specific invariant cytoplasmic domain. Presenilin-dependent intramembrane proteolysis (PS-IP) of gamma-Pcdhs and the formation of alpha/gamma-Pcdh heteromers led us to investigate the effects of homo- and heteromer formation on gamma- and putative alpha-Pcdh membrane processing and signaling. We find that upon surface delivery, alpha-Pcdhs, like gamma-Pcdhs, are subject to matrix metallo-protease cleavage followed by PS-IP in neurons. We further demonstrate that the combinatorial expression of alpha- and gamma-Pcdhs modulates the extent of their PS-IP, indicating the formation of alpha/gamma-Pcdh heteromers with an altered susceptibility to processing. Cell-specific expression of alpha/gamma-Pcdh isoforms could thus determine cell and synapse adhesive properties as well as intracellular and nuclear signaling by their soluble cytoplasmic cleavage products, alpha C-terminal fragment 2 (alpha-CTF-2) and gamma-CTF-2.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cadherinas/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de la Membrana/metabolismo , Neuropéptidos/metabolismo , Presenilinas/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Superficie Celular/metabolismo , Proteínas ADAM/genética , Proteína ADAM10 , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Moléculas de Adhesión Celular Neuronal/genética , Células Cultivadas , Humanos , Metaloproteinasas de la Matriz/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Presenilinas/genética , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Protocadherinas , Ratas , Receptores de Superficie Celular/genética , Sinapsis/metabolismo
13.
Learn Mem ; 16(6): 379-86, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19470654

RESUMEN

The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.


Asunto(s)
Trastornos de la Memoria/genética , Memoria a Corto Plazo/fisiología , Modelos Biológicos , Receptores AMPA/deficiencia , Análisis de Varianza , Animales , Conducta Animal , Conducta Exploratoria/fisiología , Femenino , Hipocampo/lesiones , Hipocampo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores Sexuales , Factores de Tiempo
14.
J Neurosci ; 28(14): 3623-30, 2008 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-18385321

RESUMEN

NMDA receptors (NMDARs) containing NR2A (epsilon1) subunits are key contributors to hippocampal long-term potentiation (LTP) induction in adult animals and have therefore been widely implicated in hippocampus-dependent spatial learning. Here we show that mice lacking the NR2A subunit or its C-terminal intracellular domain exhibit impaired spatial working memory (SWM) but normal spatial reference memory (SRM). Both NR2A mutants acquired the SRM version of the water maze task, and the SRM component of the radial maze, as well as controls. They were, however, impaired on a non-matching-to-place T-maze task, and on the SWM component of the radial maze. In addition, NR2A knock-out mice displayed a diminished spatial novelty preference in a spontaneous exploration Y-maze task, and were impaired on a T-maze task in which distinctive inserts present on the floor of the maze determined which goal arm contained the reward, but only if there was a discontiguity between the conditional cue and the place at which the reward was delivered. This dissociation of spatial memory into distinctive components is strikingly similar to results obtained with mice lacking glutamate receptor-A (GluR-A)-containing AMPA receptors, which support long-term potentiation expression. These results identify a specific role for a NMDAR-dependent signaling pathway that leads to the activation of a GluR-A-dependent expression mechanism in a rapidly acquired, flexible form of spatial memory. This mechanism depends on the C-terminal intracellular domain of the NR2A subunit. In contrast, the ability to associate a particular spatial location with the water maze escape platform or food reward is NR2A independent, as well as GluR-A independent.


Asunto(s)
Memoria a Corto Plazo/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Percepción Espacial/fisiología , Análisis de Varianza , Animales , Conducta Animal , Condicionamiento Psicológico/fisiología , Conducta Exploratoria/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/fisiología , Receptores de N-Metil-D-Aspartato/deficiencia , Factores de Tiempo
15.
J Physiol ; 587(Pt 4): 787-804, 2009 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-19103683

RESUMEN

Fragile X syndrome is one of the most common forms of mental retardation, yet little is known about the physiological mechanisms causing the disease. In this study, we probed the ionotropic glutamate receptor content in synapses of hippocampal CA1 pyramidal neurons in a mouse model for fragile X (Fmr1 KO2). We found that Fmr1 KO2 mice display a significantly lower AMPA to NMDA ratio than wild-type mice at 2 weeks of postnatal development but not at 6-7 weeks of age. This ratio difference at 2 weeks postnatally is caused by down-regulation of the AMPA and up-regulation of the NMDA receptor components. In correlation with these changes, the induction of NMDA receptor-dependent long-term potentiation following a low-frequency pairing protocol is increased in Fmr1 KO2 mice at this developmental stage but not later in maturation. We propose that ionotropic glutamate receptors, as well as potentiation, are altered at a critical time point for hippocampal network development, causing long-term changes. Associated learning and memory deficits would contribute to the fragile X mental retardation phenotype.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Regulación del Desarrollo de la Expresión Génica/genética , Plasticidad Neuronal/genética , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/biosíntesis , Hipocampo/metabolismo , Hipocampo/patología , Potenciación a Largo Plazo/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/genética , Sinapsis/patología
16.
Mol Pain ; 5: 46, 2009 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-19664265

RESUMEN

Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure. Recent studies using genetic and physiological approaches have demonstrated that the investigation of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA) receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been less investigated. Here, we report that the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in the ACC.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Giro del Cíngulo/metabolismo , Potenciación a Largo Plazo/fisiología , Receptores AMPA/fisiología , Animales , Femenino , Inmunohistoquímica , Técnicas In Vitro , Potenciación a Largo Plazo/genética , Masculino , Ratones , Ratones Noqueados , Ratones Mutantes , Mutación , Técnicas de Placa-Clamp , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Receptores AMPA/genética
17.
Eur J Neurosci ; 29(6): 1141-52, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19302150

RESUMEN

Long-term potentiation (LTP) at hippocampal CA3-CA1 synapses is thought to be mediated, at least in part, by an increase in the postsynaptic surface expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptors induced by N-methyl-d-aspartate (NMDA) receptor activation. While this process was originally attributed to the regulated synaptic insertion of GluA1 (GluR-A) subunit-containing AMPA receptors, recent evidence suggests that regulated synaptic trafficking of GluA2 subunits might also contribute to one or several phases of potentiation. However, it has so far been difficult to separate these two mechanisms experimentally. Here we used genetically modified mice lacking the GluA1 subunit (Gria1(-/-) mice) to investigate GluA1-independent mechanisms of LTP at CA3-CA1 synapses in transverse hippocampal slices. An extracellular, paired theta-burst stimulation paradigm induced a robust GluA1-independent form of LTP lacking the early, rapidly decaying component characteristic of LTP in wild-type mice. This GluA1-independent form of LTP was attenuated by inhibitors of neuronal nitric oxide synthase and protein kinase C (PKC), two enzymes known to regulate GluA2 surface expression. Furthermore, the induction of GluA1-independent potentiation required the activation of GluN2B (NR2B) subunit-containing NMDA receptors. Our findings support and extend the evidence that LTP at hippocampal CA3-CA1 synapses comprises a rapidly decaying, GluA1-dependent component and a more sustained, GluA1-independent component, induced and expressed via a separate mechanism involving GluN2B-containing NMDA receptors, neuronal nitric oxide synthase and PKC.


Asunto(s)
Expresión Génica/fisiología , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Receptores AMPA/metabolismo , Análisis de Varianza , Animales , Biofisica , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Expresión Génica/efectos de los fármacos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Óxido Nítrico Sintasa de Tipo I/metabolismo , Proteína Quinasa C/metabolismo , Receptores AMPA/antagonistas & inhibidores , Receptores AMPA/deficiencia
18.
Neuron ; 35(1): 17-20, 2002 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-12123604

RESUMEN

Nuclear pre-mRNA editing by selective adenosine deamination (A-to-I editing) occurs in all organisms from C. elegans to humans. This rare posttranscriptional mechanism can alter codons and hence the structure and function of proteins. New findings report new sites, give evidence that the efficiency of editing can be regulated by neurotransmitter, and reveal that an amino acid substitution introduced by editing into a neurotransmitter-gated ion channel subunit serves as a determinant for controlling the maturation, intracellular trafficking, and assembly with other subunits of this transmembrane protein.


Asunto(s)
Canales Iónicos/biosíntesis , Sistema Nervioso/metabolismo , Terminales Presinápticos/metabolismo , Edición de ARN/fisiología , Receptores de Neurotransmisores/biosíntesis , Adenosina/genética , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Animales , Humanos , Inosina/genética , Inosina/metabolismo , Canales Iónicos/genética , Sistema Nervioso/crecimiento & desarrollo , Proteínas de Unión al ARN , Receptores de Neurotransmisores/genética
19.
Neuron ; 44(4): 637-50, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15541312

RESUMEN

Ca(2+)-permeable AMPA receptors are densely expressed in the spinal dorsal horn, but their functional significance in pain processing is not understood. By disrupting the genes encoding GluR-A or GluR-B, we generated mice exhibiting increased or decreased numbers of Ca(2+)-permeable AMPA receptors, respectively. Here, we demonstrate that AMPA receptors are critical determinants of nociceptive plasticity and inflammatory pain. A reduction in the number of Ca(2+)-permeable AMPA receptors and density of AMPA channel currents in spinal neurons of GluR-A-deficient mice is accompanied by a loss of nociceptive plasticity in vitro and a reduction in acute inflammatory hyperalgesia in vivo. In contrast, an increase in spinal Ca(2+)-permeable AMPA receptors in GluR-B-deficient mice facilitated nociceptive plasticity and enhanced long-lasting inflammatory hyperalgesia. Thus, AMPA receptors are not mere determinants of fast synaptic transmission underlying basal pain sensitivity as previously thought, but are critically involved in activity-dependent changes in synaptic processing of nociceptive inputs.


Asunto(s)
Inflamación/fisiopatología , Plasticidad Neuronal/fisiología , Dolor/fisiopatología , Receptores AMPA/deficiencia , Médula Espinal/fisiología , Animales , Encéfalo/fisiología , Potenciales Postsinápticos Excitadores , Femenino , Inmunohistoquímica , Inflamación/etiología , Masculino , Ratones , Ratones Noqueados , Vías Nerviosas/fisiología , Nociceptores/fisiología , Técnicas de Cultivo de Órganos , Dolor/complicaciones , Receptores AMPA/genética
20.
Neuron ; 40(6): 1199-212, 2003 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-14687553

RESUMEN

Activity-driven delivery of AMPA receptors is proposed to mediate glutamatergic synaptic plasticity, both during development and learning. In hippocampal CA1 principal neurons, such trafficking is primarily mediated by the abundant GluR-A subunit. We now report a study of GluR-B(long), a C-terminal splice variant of the GluR-B subunit. GluR-B(long) synaptic delivery is regulated by two forms of activity. Spontaneous synaptic activity-driven GluR-B(long) transport maintains one-third of the steady-state AMPA receptor-mediated responses, while GluR-B(long) delivery following the induction of LTP is responsible for approximately 50% of the resulting potentiation at the hippocampal CA3 to CA1 synapses at the time of GluR-B(long) peak expression-the second postnatal week. Trafficking of GluR-B(long)-containing receptors thus mediates a GluR-A-independent form of glutamatergic synaptic plasticity in the juvenile hippocampus.


Asunto(s)
Receptores AMPA/deficiencia , Sinapsis/metabolismo , Secuencia de Aminoácidos , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Plasticidad Neuronal/fisiología , Transporte de Proteínas/fisiología , Receptores AMPA/biosíntesis , Receptores AMPA/genética , Análisis de Secuencia de Proteína/métodos , Sinapsis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA