RESUMEN
Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.
Asunto(s)
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanosomiasis Africana , Moscas Tse-Tse , Animales , Bovinos , Nitrofurantoína/farmacología , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Tripanosomiasis Africana/parasitología , Moscas Tse-Tse/parasitología , MamíferosRESUMEN
African trypanosomes cause diseases in humans and livestock. Human African trypanosomiasis is caused by Trypanosoma brucei rhodesiense and T. b. gambiense. Animal trypanosomoses have major effects on livestock production and the economy in developing countries, with disease management depending mainly on chemotherapy. Moreover, only few drugs are available and these have adverse effects on patients, are costly, show poor accessibility, and parasites develop drug resistance to them. Therefore, novel trypanocidal drugs are urgently needed. Here, the effects of synthesized nitrofurantoin analogs were evaluated against six species/strains of animal and human trypanosomes, and the treatment efficacy of the selected compounds was assessed in vivo. Analogs 11 and 12, containing 11- and 12-carbon aliphatic chains, respectively, showed the highest trypanocidal activity (IC50 < 0.34 µM) and the lowest cytotoxicity (IC50 > 246.02 µM) in vitro. Structure-activity relationship analysis suggested that the trypanocidal activity and cytotoxicity were related to the number of carbons in the aliphatic chain and electronegativity. In vivo experiments, involving oral treatment with nitrofurantoin, showed partial efficacy, whereas the selected analogs showed no treatment efficacy. These results indicate that nitrofurantoin analogs with high hydrophilicity are required for in vivo assessment to determine if they are promising leads for developing trypanocidal drugs.
Asunto(s)
Nitrofuranos/administración & dosificación , Nitrofuranos/síntesis química , Nitrofurantoína/análogos & derivados , Tripanocidas/administración & dosificación , Tripanocidas/síntesis química , Tripanosomiasis Africana/tratamiento farmacológico , Administración Oral , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Ratones , Estructura Molecular , Nitrofuranos/química , Nitrofuranos/farmacología , Relación Estructura-Actividad , Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei gambiense/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacosRESUMEN
Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 µM) and T. b.rhodesiense (0.11 ± 0.06 µM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.