Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 457(7229): 577-80, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19177128

RESUMEN

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol(-1) was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom(6). The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.


Asunto(s)
Carbono/metabolismo , Hierro/metabolismo , Agua de Mar/química , Regiones Antárticas , Clorofila/análisis , Clorofila/metabolismo , Clorofila A , Eutrofización , Geografía , Sedimentos Geológicos/química , Océanos y Mares , Fitoplancton/metabolismo , Estaciones del Año , Factores de Tiempo
2.
Front Psychol ; 14: 1130596, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37388649

RESUMEN

Plastic pollution is both a societal and environmental problem and citizen science has shown to be a useful tool to engage both the public and professionals in addressing it. However, knowledge on the educational and behavioral impacts of citizen science projects focusing on marine litter remains limited. Our preregistered study investigates the impact of the citizen science project Citizen Observation of Local Litter in coastal ECosysTems (COLLECT) on the participants' ocean literacy, pro-environmental intentions and attitudes, well-being, and nature connectedness, using a pretest-posttest design. A total of 410 secondary school students from seven countries, in Africa (Benin, Cabo Verde, Côte d'Ivoire, Ghana, Morocco, Nigeria) and Asia (Malaysia) were trained to sample plastics on sandy beaches and to analyze their collection in the classroom. Non-parametric statistical tests (n = 239 matched participants) demonstrate that the COLLECT project positively impacted ocean literacy (i.e., awareness and knowledge of marine litter, self-reported litter-reducing behaviors, attitudes towards beach litter removal). The COLLECT project also led to higher pro-environmental behavioral intentions for students in Benin and Ghana (implying a positive spillover effect) and higher well-being and nature connectedness for students in Benin. Results are interpreted in consideration of a high baseline in awareness and attitudes towards marine litter, a low internal consistency of pro-environmental attitudes, the cultural context of the participating countries, and the unique settings of the project's implementation. Our study highlights the benefits and challenges of understanding how citizen science impacts the perceptions and behaviors towards marine litter in youth from the respective regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA