Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Rev ; 116(4): 2170-243, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26713458

RESUMEN

The review summarizes current trends and developments in the polymerization of alkylene oxides in the last two decades since 1995, with a particular focus on the most important epoxide monomers ethylene oxide (EO), propylene oxide (PO), and butylene oxide (BO). Classical synthetic pathways, i.e., anionic polymerization, coordination polymerization, and cationic polymerization of epoxides (oxiranes), are briefly reviewed. The main focus of the review lies on more recent and in some cases metal-free methods for epoxide polymerization, i.e., the activated monomer strategy, the use of organocatalysts, such as N-heterocyclic carbenes (NHCs) and N-heterocyclic olefins (NHOs) as well as phosphazene bases. In addition, the commercially relevant double-metal cyanide (DMC) catalyst systems are discussed. Besides the synthetic progress, new types of multifunctional linear PEG (mf-PEG) and PPO structures accessible by copolymerization of EO or PO with functional epoxide comonomers are presented as well as complex branched, hyperbranched, and dendrimer like polyethers. Amphiphilic block copolymers based on PEO and PPO (Poloxamers and Pluronics) and advances in the area of PEGylation as the most important bioconjugation strategy are also summarized. With the ever growing toolbox for epoxide polymerization, a "polyether universe" may be envisaged that in its structural diversity parallels the immense variety of structural options available for polymers based on vinyl monomers with a purely carbon-based backbone.


Asunto(s)
Alquinos/síntesis química , Compuestos Epoxi/síntesis química , Óxido de Etileno/síntesis química , Óxidos/síntesis química , Polímeros/síntesis química , Alquinos/química , Compuestos Epoxi/química , Óxido de Etileno/química , Estructura Molecular , Óxidos/química , Polimerizacion , Polímeros/química
2.
Macromol Rapid Commun ; 38(1)2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28045229

RESUMEN

The synthesis of thioether-bearing hyperbranched polyether polyols based on an AB/AB2 type copolymerization (cyclic latent monomers) is introduced. The polymers are prepared by anionic ring-opening multibranching copolymerization of glycidol and 2-(methylthio)ethyl glycidyl ether (MTEGE), which is conveniently accessible in a single etherification step. Slow monomer addition provides control over molecular weights. Moderate dispersities (D = 1.48-1.85) are obtained, given the hyperbranched structure. In situ 1 H NMR copolymerization kinetics reveal reactivity ratios of rG = 3.7 and rMTEGE = 0.27. Using slow monomer addition, copolymer composition can be systematically varied, allowing for the adjustment of the hydroxyl/thioether ratio, the degree of branching (DB = 0.36-0.48), thermal properties, and cloud point temperatures in aqueous solution in the range of 29-75 °C. Thioether oxidation to sulfoxides enables to tailor the copolymers' solubility profile. Use of these copolymers as a versatile, multifunctional platform for orthogonal modification is highlighted. The methyl sulfide groups can be selectively alkoxylated, using propylene oxide, allyl glycidyl ether, or furfuryl glycidyl ether, resulting in functional hyperbranched polyelectrolytes. Reaction of the alcohol groups with benzyl isocyanate demonstrates successful orthogonal functionalization.


Asunto(s)
Éteres/química , Metionina/química , Polímeros/química , Compuestos de Sulfhidrilo/química , Estructura Molecular , Polimerizacion , Polímeros/síntesis química , Temperatura
3.
Macromol Rapid Commun ; 35(2): 198-203, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24214125

RESUMEN

Multi-arm star copolymers based on a hyperbranched poly(propylene oxide) polyether-polyol (hbPPO) as a core and poly(propylene carbonate) (PPC) arms are synthesized in two steps from propylene oxide (PO), a small amount of glycidol and CO2 . The PPC arms are prepared via carbon dioxide (CO2 )/PO copolymerization, using hbPPO as a multifunctional macroinitiator and the (R,R)-(salcy)CoOBzF5 catalyst. Star copolymers with 14 and 28 PPC arms, respectively, and controlled molecular weights in the range of 2700-8800 g mol(-1) are prepared (Mw /Mn = 1.23-1.61). Thermal analysis reveals lowered glass transition temperatures in the range of -8 to 10 °C for the PPC star polymers compared with linear PPC, which is due to the influence of the flexible polyether core. Successful conversion of the terminal hydroxyl groups with phenylisocyanate demonstrates the potential of the polycarbonate polyols for polyurethane synthesis.


Asunto(s)
Dióxido de Carbono/química , Compuestos Epoxi/química , Éter/química , Cemento de Policarboxilato/química , Polímeros/química
4.
ACS Macro Lett ; 1(7): 888-891, 2012 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35607138

RESUMEN

Backbone-thermoresponsive hyperbranched poly(propylene oxide)-based polyether polyols have been synthesized by anionic ring-opening copolymerization of glycidol and propylene oxide. The number of functional hydroxyl end groups and the lower critical solution temperature (LCST) can be readily adjusted by varying the comonomer ratio. Molecular weights in the range of 1200-2000 g/mol were achieved. Hyperbranched polyether polyols with LCST values between 24 and 83 °C can be obtained in a convenient one-step reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA