Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 81(4): 845-858.e8, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33406384

RESUMEN

Mammalian genomes contain long domains with distinct average compositions of A/T versus G/C base pairs. In a screen for proteins that might interpret base composition by binding to AT-rich motifs, we identified the stem cell factor SALL4, which contains multiple zinc fingers. Mutation of the domain responsible for AT binding drastically reduced SALL4 genome occupancy and prematurely upregulated genes in proportion to their AT content. Inactivation of this single AT-binding zinc-finger cluster mimicked defects seen in Sall4 null cells, including precocious differentiation of embryonic stem cells (ESCs) and embryonic lethality in mice. In contrast, deletion of two other zinc-finger clusters was phenotypically neutral. Our data indicate that loss of pluripotency is triggered by downregulation of SALL4, leading to de-repression of a set of AT-rich genes that promotes neuronal differentiation. We conclude that base composition is not merely a passive byproduct of genome evolution and constitutes a signal that aids control of cell fate.


Asunto(s)
Composición de Base , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Regulación hacia Abajo , Ratones , Ratones Mutantes , Células Madre Embrionarias de Ratones/citología , Mutación , Neuronas/citología , Factores de Transcripción/genética , Regulación hacia Arriba , Dedos de Zinc
2.
Mol Cell ; 81(6): 1260-1275.e12, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33561390

RESUMEN

DNA methylation is implicated in neuronal biology via the protein MeCP2, the mutation of which causes Rett syndrome. MeCP2 recruits the NCOR1/2 co-repressor complexes to methylated cytosine in the CG dinucleotide, but also to sites of non-CG methylation, which are abundant in neurons. To test the biological significance of the dual-binding specificity of MeCP2, we replaced its DNA binding domain with an orthologous domain from MBD2, which can only bind mCG motifs. Knockin mice expressing the domain-swap protein displayed severe Rett-syndrome-like phenotypes, indicating that normal brain function requires the interaction of MeCP2 with sites of non-CG methylation, specifically mCAC. The results support the notion that the delayed onset of Rett syndrome is due to the simultaneous post-natal accumulation of mCAC and its reader MeCP2. Intriguingly, genes dysregulated in both Mecp2 null and domain-swap mice are implicated in other neurological disorders, potentially highlighting targets of relevance to the Rett syndrome phenotype.


Asunto(s)
Metilación de ADN , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Animales , Islas de CpG , Técnicas de Sustitución del Gen , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Transgénicos , Mutación , Células 3T3 NIH , Neuronas/patología , Dominios Proteicos , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Síndrome de Rett/patología
3.
Genes Dev ; 32(23-24): 1514-1524, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30463906

RESUMEN

Duplication of the X-linked MECP2 gene causes a severe neurological syndrome whose molecular basis is poorly understood. To determine the contribution of known functional domains to overexpression toxicity, we engineered a mouse model that expresses wild-type or mutated MeCP2 from the Mapt (Tau) locus in addition to the endogenous protein. Animals that expressed approximately four times the wild-type level of MeCP2 failed to survive to weaning. Strikingly, a single amino acid substitution that prevents MeCP2 from binding to the TBL1X(R1) subunit of nuclear receptor corepressor 1/2 (NCoR1/2) complexes, when expressed at equivalent high levels, was phenotypically indistinguishable from wild type, suggesting that excessive corepressor recruitment underlies toxicity. In contrast, mutations affecting the DNA-binding domain were toxic when overexpressed. As the NCoR1/2 corepressors are thought to act through histone deacetylation by histone deacetylase 3 (HDAC3), we asked whether mutations in NCoR1 and NCoR2 that drastically reduced their ability to activate this enzyme would relieve the MeCP2 overexpression phenotype. Surprisingly, severity was unaffected, indicating that the catalytic activity of HDAC3 is not the mediator of toxicity. Our findings shed light on the molecular mechanisms underlying MECP2 duplication syndrome and call for a re-evaluation of the precise biological role played by corepressor recruitment.


Asunto(s)
Expresión Génica , Histona Desacetilasas/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/toxicidad , Animales , Proteínas Co-Represoras/metabolismo , Modelos Animales de Enfermedad , Activación Enzimática/genética , Técnicas de Inactivación de Genes , Histona Desacetilasas/genética , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/fisiopatología , Ratones , Mutación , Enfermedades del Sistema Nervioso/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/metabolismo , Dominios Proteicos , Proteínas tau/metabolismo
4.
Annu Rev Cell Dev Biol ; 27: 631-52, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21721946

RESUMEN

Methyl-CpG binding protein 2 (MeCP2) was first identified in 1992 as a protein that binds specifically to methylated DNA. Mutations in the MECP2 gene were later found to be the cause of an autism spectrum disorder, Rett syndrome. Despite almost 20 years of research into the molecular mechanisms of MeCP2 function, many questions are yet to be answered conclusively. This review considers several key questions and attempts to evaluate the current state of evidence. For example, is MeCP2 just a methyl-CpG binding protein? Is it a multifunctional protein or primarily a transcriptional repressor? We also consider whether MeCP2, as a chromosome-binding protein, acts at specific sites within the genome or more globally, and in which cell types it is functionally important. Finally, we consider two alternative views of MeCP2 in the brain: as a regulator of brain development or as a factor that helps maintain neuronal/glial function.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Animales , Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Islas de CpG , Metilación de ADN , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/genética , Neuroglía/metabolismo , Neuronas/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
5.
Nature ; 550(7676): 398-401, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-29019980

RESUMEN

Heterozygous mutations in the X-linked MECP2 gene cause the neurological disorder Rett syndrome. The methyl-CpG-binding protein 2 (MeCP2) protein is an epigenetic reader whose binding to chromatin primarily depends on 5-methylcytosine. Functionally, MeCP2 has been implicated in several cellular processes on the basis of its reported interaction with more than 40 binding partners, including transcriptional co-repressors (for example, the NCoR/SMRT complex), transcriptional activators, RNA, chromatin remodellers, microRNA-processing proteins and splicing factors. Accordingly, MeCP2 has been cast as a multi-functional hub that integrates diverse processes that are essential in mature neurons. At odds with the concept of broad functionality, missense mutations that cause Rett syndrome are concentrated in two discrete clusters coinciding with interaction sites for partner macromolecules: the methyl-CpG binding domain and the NCoR/SMRT interaction domain. Here we test the hypothesis that the single dominant function of MeCP2 is to physically connect DNA with the NCoR/SMRT complex, by removing almost all amino-acid sequences except the methyl-CpG binding and NCoR/SMRT interaction domains. We find that mice expressing truncated MeCP2 lacking both the N- and C-terminal regions (approximately half of the native protein) are phenotypically near-normal; and those expressing a minimal MeCP2 additionally lacking a central domain survive for over one year with only mild symptoms. This minimal protein is able to prevent or reverse neurological symptoms when introduced into MeCP2-deficient mice by genetic activation or virus-mediated delivery to the brain. Thus, despite evolutionary conservation of the entire MeCP2 protein sequence, the DNA and co-repressor binding domains alone are sufficient to avoid Rett syndrome-like defects and may therefore have therapeutic utility.


Asunto(s)
Prueba de Complementación Genética , Terapia Genética/métodos , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/terapia , Eliminación de Secuencia , Células 3T3 , Animales , Encéfalo/metabolismo , ADN/metabolismo , Células HeLa , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/deficiencia , Ratones , Mutación Missense , Fenotipo , Dominios Proteicos/genética , Estabilidad Proteica , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Transducción Genética
6.
Hum Mol Genet ; 27(14): 2531-2545, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29718204

RESUMEN

Most missense mutations causing Rett syndrome (RTT) affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterized domains. We studied the molecular consequences of four of these 'non-canonical' mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of RTT. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilize these mutant proteins may be of therapeutic value.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , Proteínas Represoras/genética , Síndrome de Rett/genética , Animales , Proteínas Cromosómicas no Histona/genética , Metilación de ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Mutación Missense/genética , Neuronas/patología , Síndrome de Rett/patología
7.
PLoS Genet ; 13(5): e1006793, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28498846

RESUMEN

Mutations in the gene encoding the methyl-CG binding protein MeCP2 cause several neurological disorders including Rett syndrome. The di-nucleotide methyl-CG (mCG) is the classical MeCP2 DNA recognition sequence, but additional methylated sequence targets have been reported. Here we show by in vitro and in vivo analyses that MeCP2 binding to non-CG methylated sites in brain is largely confined to the tri-nucleotide sequence mCAC. MeCP2 binding to chromosomal DNA in mouse brain is proportional to mCAC + mCG density and unexpectedly defines large genomic domains within which transcription is sensitive to MeCP2 occupancy. Our results suggest that MeCP2 integrates patterns of mCAC and mCG in the brain to restrain transcription of genes critical for neuronal function.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN , Repeticiones de Dinucleótido , Proteína 2 de Unión a Metil-CpG/metabolismo , Repeticiones de Trinucleótidos , Animales , Islas de CpG , Citosina/metabolismo , Epigénesis Genética , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Síndrome de Rett/genética
8.
Hum Mol Genet ; 25(3): 558-70, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26647311

RESUMEN

Rett syndrome is caused by mutations in the X-linked MECP2 gene, which encodes a chromosomal protein that binds to methylated DNA. Mouse models mirror the human disorder and therefore allow investigation of phenotypes at a molecular level. We describe an Mecp2 allelic series representing the three most common missense Rett syndrome (RTT) mutations, including first reports of Mecp2[R133C] and Mecp2[T158M] knock-in mice, in addition to Mecp2[R306C] mutant mice. Together these three alleles comprise ∼25% of all RTT mutations in humans, but they vary significantly in average severity. This spectrum is mimicked in the mouse models; R133C being least severe, T158M most severe and R306C of intermediate severity. Both R133C and T158M mutations cause compound phenotypes at the molecular level, combining compromised DNA binding with reduced stability, the destabilizing effect of T158M being more severe. Our findings contradict the hypothesis that the R133C mutation exclusively abolishes binding to hydroxymethylated DNA, as interactions with DNA containing methyl-CG, methyl-CA and hydroxymethyl-CA are all reduced in vivo. We find that MeCP2[T158M] is significantly less stable than MeCP2[R133C], which may account for the divergent clinical impact of the mutations. Overall, this allelic series recapitulates human RTT severity, reveals compound molecular aetiologies and provides a valuable resource in the search for personalized therapeutic interventions.


Asunto(s)
Alelos , Proteína 2 de Unión a Metil-CpG/genética , Mutación Missense , Síndrome de Rett/genética , Síndrome de Rett/patología , Sustitución de Aminoácidos , Animales , ADN/genética , ADN/metabolismo , Metilación de ADN , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Sustitución del Gen , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Transgénicos , Modelos Moleculares , Fenotipo , Unión Proteica , Síndrome de Rett/metabolismo , Síndrome de Rett/mortalidad , Índice de Severidad de la Enfermedad , Transducción de Señal , Análisis de Supervivencia
9.
Hum Mol Genet ; 25(20): 4389-4404, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28173151

RESUMEN

Rett syndrome (RTT) is a severe genetic disorder resulting from mutations in the X-linked MECP2 gene. MeCP2 protein is highly expressed in the nervous system and deficiency in the mouse central nervous system alone recapitulates many features of the disorder. This suggests that RTT is primarily a neurological disorder, although the protein is reportedly widely expressed throughout the body. To determine whether aspects of the RTT phenotype that originate in non-neuronal tissues might have been overlooked, we generated mice in which Mecp2 remains at near normal levels in the nervous system, but is severely depleted elsewhere. Comparison of these mice with wild type and globally MeCP2-deficient mice showed that the majority of RTT-associated behavioural, sensorimotor, gait and autonomic (respiratory and cardiac) phenotypes are absent. Specific peripheral phenotypes were observed, however, most notably hypo-activity, exercise fatigue and bone abnormalities. Our results confirm that the brain should be the primary target for potential RTT therapies, but also strongly suggest that some less extreme but clinically significant aspects of the disorder arise independently of defects in the nervous system.


Asunto(s)
Encéfalo/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Fenotipo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Especificidad de Órganos , Síndrome de Rett/genética
10.
Development ; 141(3): 604-616, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24449838

RESUMEN

The histone deacetylases HDAC1 and HDAC2 are crucial regulators of chromatin structure and gene expression, thereby controlling important developmental processes. In the mouse brain, HDAC1 and HDAC2 exhibit different developmental stage- and lineage-specific expression patterns. To examine the individual contribution of these deacetylases during brain development, we deleted different combinations of Hdac1 and Hdac2 alleles in neural cells. Ablation of Hdac1 or Hdac2 by Nestin-Cre had no obvious consequences on brain development and architecture owing to compensation by the paralog. By contrast, combined deletion of Hdac1 and Hdac2 resulted in impaired chromatin structure, DNA damage, apoptosis and embryonic lethality. To dissect the individual roles of HDAC1 and HDAC2, we expressed single alleles of either Hdac1 or Hdac2 in the absence of the respective paralog in neural cells. The DNA-damage phenotype observed in double knockout brains was prevented by expression of a single allele of either Hdac1 or Hdac2. Strikingly, Hdac1(-/-)Hdac2(+/-) brains showed normal development and no obvious phenotype, whereas Hdac1(+/-)Hdac2(-/-) mice displayed impaired brain development and perinatal lethality. Hdac1(+/-)Hdac2(-/-) neural precursor cells showed reduced proliferation and premature differentiation mediated by overexpression of protein kinase C, delta, which is a direct target of HDAC2. Importantly, chemical inhibition or knockdown of protein kinase C delta was sufficient to rescue the phenotype of neural progenitor cells in vitro. Our data indicate that HDAC1 and HDAC2 have a common function in maintaining proper chromatin structures and show that HDAC2 has a unique role by controlling the fate of neural progenitors during normal brain development.


Asunto(s)
Alelos , Encéfalo/embriología , Encéfalo/enzimología , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Homología de Secuencia de Aminoácido , Acetofenonas/farmacología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Benzopiranos/farmacología , Encéfalo/metabolismo , Encéfalo/patología , Proteínas Co-Represoras/metabolismo , Daño del ADN/genética , Pérdida del Embrión/enzimología , Pérdida del Embrión/patología , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/genética , Histona Desacetilasa 2/metabolismo , Ratones , Ratones Endogámicos C57BL , Fenotipo , Proteína Quinasa C-delta/antagonistas & inhibidores , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
11.
Nature ; 470(7334): 419-23, 2011 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-21278727

RESUMEN

Thymine DNA glycosylase (TDG) is a member of the uracil DNA glycosylase (UDG) superfamily of DNA repair enzymes. Owing to its ability to excise thymine when mispaired with guanine, it was proposed to act against the mutability of 5-methylcytosine (5-mC) deamination in mammalian DNA. However, TDG was also found to interact with transcription factors, histone acetyltransferases and de novo DNA methyltransferases, and it has been associated with DNA demethylation in gene promoters following activation of transcription, altogether implicating an engagement in gene regulation rather than DNA repair. Here we use a mouse genetic approach to determine the biological function of this multifaceted DNA repair enzyme. We find that, unlike other DNA glycosylases, TDG is essential for embryonic development, and that this phenotype is associated with epigenetic aberrations affecting the expression of developmental genes. Fibroblasts derived from Tdg null embryos (mouse embryonic fibroblasts, MEFs) show impaired gene regulation, coincident with imbalanced histone modification and CpG methylation at promoters of affected genes. TDG associates with the promoters of such genes both in fibroblasts and in embryonic stem cells (ESCs), but epigenetic aberrations only appear upon cell lineage commitment. We show that TDG contributes to the maintenance of active and bivalent chromatin throughout cell differentiation, facilitating a proper assembly of chromatin-modifying complexes and initiating base excision repair to counter aberrant de novo methylation. We thus conclude that TDG-dependent DNA repair has evolved to provide epigenetic stability in lineage committed cells.


Asunto(s)
Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Epigénesis Genética/genética , Genes Letales/genética , Fenotipo , Timina ADN Glicosilasa/metabolismo , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , Metilación de ADN , Reparación del ADN , Embrión de Mamíferos/enzimología , Fibroblastos/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Genes Esenciales/genética , Histonas/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Timina ADN Glicosilasa/deficiencia , Timina ADN Glicosilasa/genética
12.
Nature ; 464(7291): 1082-6, 2010 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-20393567

RESUMEN

CpG islands (CGIs) are prominent in the mammalian genome owing to their GC-rich base composition and high density of CpG dinucleotides. Most human gene promoters are embedded within CGIs that lack DNA methylation and coincide with sites of histone H3 lysine 4 trimethylation (H3K4me3), irrespective of transcriptional activity. In spite of these intriguing correlations, the functional significance of non-methylated CGI sequences with respect to chromatin structure and transcription is unknown. By performing a search for proteins that are common to all CGIs, here we show high enrichment for Cfp1, which selectively binds to non-methylated CpGs in vitro. Chromatin immunoprecipitation of a mono-allelically methylated CGI confirmed that Cfp1 specifically associates with non-methylated CpG sites in vivo. High throughput sequencing of Cfp1-bound chromatin identified a notable concordance with non-methylated CGIs and sites of H3K4me3 in the mouse brain. Levels of H3K4me3 at CGIs were markedly reduced in Cfp1-depleted cells, consistent with the finding that Cfp1 associates with the H3K4 methyltransferase Setd1 (refs 7, 8). To test whether non-methylated CpG-dense sequences are sufficient to establish domains of H3K4me3, we analysed artificial CpG clusters that were integrated into the mouse genome. Despite the absence of promoters, the insertions recruited Cfp1 and created new peaks of H3K4me3. The data indicate that a primary function of non-methylated CGIs is to genetically influence the local chromatin modification state by interaction with Cfp1 and perhaps other CpG-binding proteins.


Asunto(s)
Ensamble y Desensamble de Cromatina , Cromatina/genética , Cromatina/metabolismo , Islas de CpG/genética , Transactivadores/metabolismo , Alelos , Animales , Encéfalo/citología , Línea Celular , Inmunoprecipitación de Cromatina , Metilación de ADN , Genoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/metabolismo , Metilación , Ratones , Células 3T3 NIH , Regiones Promotoras Genéticas , Transactivadores/química , Transactivadores/deficiencia , Transactivadores/genética , Dedos de Zinc
13.
Hum Mol Genet ; 21(17): 3806-14, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22653753

RESUMEN

Rett Syndrome is a neurological disorder caused by mutations in the X-linked MECP2 gene. Mouse models where Mecp2 is inactivated or mutated recapitulate several features of the disorder and have demonstrated a requirement for the protein to ensure brain function in adult mice. We deleted the Mecp2 gene in ~80% of brain cells at three postnatal ages to determine whether the need for MeCP2 varies with age. Inactivation at all three time points induced Rett-like phenotypes and caused premature death of the animals. We find two threshold ages beyond which the requirement for MeCP2 markedly increases in stringency. The earlier threshold (8-14 weeks), when inactivated mice develop symptoms, represents early adulthood in the mouse and coincides with the period when Mecp2-null mice exhibit terminal symptoms. Unexpectedly, we identified a later age threshold (30-45 weeks) beyond which an 80% reduction in MeCP2 is incompatible with life. This finding suggests an enhanced role for MeCP2 in the aging brain.


Asunto(s)
Envejecimiento/genética , Silenciador del Gen , Proteína 2 de Unión a Metil-CpG/genética , Envejecimiento/efectos de los fármacos , Animales , Animales Recién Nacidos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Sitios Genéticos/genética , Aprendizaje/efectos de los fármacos , Masculino , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Fenotipo , Recombinación Genética/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatología , Análisis de Supervivencia , Tamoxifeno/farmacología
14.
Brain ; 135(Pt 9): 2699-710, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22525157

RESUMEN

Rett syndrome is a neurological disorder caused by mutation of the X-linked MECP2 gene. Mice lacking functional Mecp2 display a spectrum of Rett syndrome-like signs, including disturbances in motor function and abnormal patterns of breathing, accompanied by structural defects in central motor areas and the brainstem. Although routinely classified as a neurodevelopmental disorder, many aspects of the mouse phenotype can be effectively reversed by activation of a quiescent Mecp2 gene in adults. This suggests that absence of Mecp2 during brain development does not irreversibly compromise brain function. It is conceivable, however, that deep-seated neurological defects persist in mice rescued by late activation of Mecp2. To test this possibility, we have quantitatively analysed structural and functional plasticity of the rescued adult male mouse brain. Activation of Mecp2 in ∼70% of neurons reversed many morphological defects in the motor cortex, including neuronal size and dendritic complexity. Restoration of Mecp2 expression was also accompanied by a significant improvement in respiratory and sensory-motor functions, including breathing pattern, grip strength, balance beam and rotarod performance. Our findings sustain the view that MeCP2 does not play a pivotal role in brain development, but may instead be required to maintain full neurological function once development is complete.


Asunto(s)
Conducta Animal/fisiología , Corteza Cerebral/patología , Proteína 2 de Unión a Metil-CpG/genética , Neuronas/patología , Fenotipo , Síndrome de Rett/genética , Animales , Corteza Cerebral/metabolismo , Corteza Cerebral/fisiopatología , Modelos Animales de Enfermedad , Silenciador del Gen , Fuerza de la Mano/fisiología , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Neuronas/metabolismo , Síndrome de Rett/metabolismo , Síndrome de Rett/patología , Síndrome de Rett/fisiopatología , Prueba de Desempeño de Rotación con Aceleración Constante
15.
PLoS Biol ; 7(4): e91, 2009 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-19402749

RESUMEN

5-Fluorouracil (5-FU), a chemotherapeutic drug commonly used in cancer treatment, imbalances nucleotide pools, thereby favoring misincorporation of uracil and 5-FU into genomic DNA. The processing of these bases by DNA repair activities was proposed to cause DNA-directed cytotoxicity, but the underlying mechanisms have not been resolved. In this study, we investigated a possible role of thymine DNA glycosylase (TDG), one of four mammalian uracil DNA glycosylases (UDGs), in the cellular response to 5-FU. Using genetic and biochemical tools, we found that inactivation of TDG significantly increases resistance of both mouse and human cancer cells towards 5-FU. We show that excision of DNA-incorporated 5-FU by TDG generates persistent DNA strand breaks, delays S-phase progression, and activates DNA damage signaling, and that the repair of 5-FU-induced DNA strand breaks is more efficient in the absence of TDG. Hence, excision of 5-FU by TDG, but not by other UDGs (UNG2 and SMUG1), prevents efficient downstream processing of the repair intermediate, thereby mediating DNA-directed cytotoxicity. The status of TDG expression in a cancer is therefore likely to determine its response to 5-FU-based chemotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Daño del ADN , Reparación del ADN/efectos de los fármacos , Fluorouracilo/farmacología , Neoplasias/tratamiento farmacológico , Timina ADN Glicosilasa/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Ciclo Celular/genética , Línea Celular Tumoral , ADN Glicosilasas/metabolismo , Fluorouracilo/uso terapéutico , Ratones , Neoplasias/genética , Transducción de Señal , Uracil-ADN Glicosidasa/metabolismo
16.
Wellcome Open Res ; 7: 185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966957

RESUMEN

Cre/Lox technology is a powerful tool in the mouse genetics tool-box as it enables tissue-specific and inducible mutagenesis of specific gene loci. Correct interpretation of phenotypes depends upon knowledge of the Cre expression pattern in the chosen mouse driver line to ensure that appropriate cell types are targeted. For studies of the brain and neurological disease a pan-neuronal promoter that reliably drives efficient neuron-specific transgene expression would be valuable. Here we compare a widely used "pan-neuronal" mouse Cre driver line, Syn1-cre, with a little-known alternative, Snap25-IRES2-cre. Our results show that the Syn1-cre line broadly expresses in the brain but is indetectable in more than half of all neurons and weakly active in testes. In contrast the Snap25-IRES2-cre line expressed Cre in a high proportion of neurons (~85%) and was indetectable in all non-brain tissues that were analysed, including testes. Our findings suggest that for many purposes Snap25-IRES2-cre is superior to Syn1-cre as a potential pan-neuronal cre driver.

17.
Mol Cell Biol ; 26(1): 199-208, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16354691

RESUMEN

Kaiso is a BTB domain protein that associates with the signaling molecule p120-catenin and binds to the methylated sequence mCGmCG or the nonmethylated sequence CTGCNA to modulate transcription. In Xenopus laevis, xKaiso deficiency leads to embryonic death accompanied by premature gene activation in blastulae and upregulation of the xWnt11 gene. Kaiso has also been proposed to play an essential role in mammalian synapse-specific transcription. We disrupted the Kaiso gene in mice to assess its role in mammalian development. Kaiso-null mice were viable and fertile, with no detectable abnormalities of development or gene expression. However, when crossed with tumor-susceptible Apc(Min/+) mice, Kaiso-null mice showed a delayed onset of intestinal tumorigenesis. Kaiso was found to be upregulated in murine intestinal tumors and is expressed in human colon cancers. Our data suggest that Kaiso plays a role in intestinal cancer and may therefore represent a potential target for therapeutic intervention.


Asunto(s)
Neoplasias Intestinales/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular/genética , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Marcación de Gen , Neoplasias Intestinales/metabolismo , Ratones , Ratones Mutantes , Neuronas/citología , Fenotipo , Activación Transcripcional , Regulación hacia Arriba
18.
Epigenomes ; 3(1): 7, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31354981

RESUMEN

Most human genes are associated with promoters embedded in non-methylated, G + C-rich CpG islands (CGIs). Not all CGIs are found at annotated promoters, however, raising the possibility that many serve as promoters for transcripts that do not code for proteins. To test this hypothesis, we searched for novel transcripts in embryonic stem cells (ESCs) that originate within orphan CGIs. Among several candidates, we detected a transcript that included three members of the let-7 micro-RNA family: Let-7a-1, let-7f-1, and let-7d. Deletion of the CGI prevented expression of the precursor RNA and depleted the included miRNAs. Mice homozygous for this mutation were sub-viable and showed growth and other defects. The results suggest that despite the identity of their seed sequences, members of the let-7 miRNA family exert distinct functions that cannot be complemented by other members.

19.
Cell Rep ; 24(9): 2213-2220, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30157418

RESUMEN

MeCP2 is a nuclear protein that is mutated in the severe neurological disorder Rett syndrome (RTT). The ability to target ß-galactosidase to the nucleus was previously used to identify a conserved nuclear localization signal (NLS) in MeCP2 that interacts with the nuclear import factors KPNA3 and KPNA4. Here, we report that nuclear localization of MeCP2 does not depend on its NLS. Instead, our data reveal that an intact methyl-CpG binding domain (MBD) is sufficient for nuclear localization, suggesting that MeCP2 can be retained in the nucleus by its affinity for DNA. Consistent with these findings, we demonstrate that disease progression in a mouse model of RTT is unaffected by an inactivating mutation in the NLS of MeCP2. Taken together, our work reveals an unexpected redundancy between functional domains of MeCP2 in targeting this protein to the nucleus, potentially explaining why NLS-inactivating mutations are rarely associated with disease.


Asunto(s)
ADN/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Señales de Localización Nuclear/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Islas de CpG , ADN/genética , Modelos Animales de Enfermedad , Masculino , Proteína 2 de Unión a Metil-CpG/genética , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Síndrome de Rett/metabolismo , alfa Carioferinas/metabolismo
20.
Nat Commun ; 6: 6920, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25908537

RESUMEN

Dendritic cells (DCs) direct CD4(+) T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4(+) T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation.


Asunto(s)
Proteínas de Unión al ADN/inmunología , Células Dendríticas/inmunología , Regulación de la Expresión Génica/genética , ARN Mensajero/metabolismo , Células Th2/inmunología , Alérgenos , Animales , Linfocitos T CD4-Positivos/inmunología , Polaridad Celular , Inmunoprecipitación de Cromatina , Metilación de ADN , Proteínas de Unión al ADN/genética , Ensayo de Inmunoadsorción Enzimática , Epigénesis Genética , Citometría de Flujo , Hipersensibilidad/inmunología , Activación de Linfocitos/inmunología , Ratones , Ratones Noqueados , Pyroglyphidae/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA