Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(18): e2215682121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648481

RESUMEN

Sustainability challenges related to food production arise from multiple nature-society interactions occurring over long time periods. Traditional methods of quantitative analysis do not represent long-term changes in the networks of system components, including institutions and knowledge that affect system behavior. Here, we develop an approach to study system structure and evolution by combining a qualitative framework that represents sustainability-relevant human, technological, and environmental components, and their interactions, mediated by knowledge and institutions, with network modeling that enables quantitative metrics. We use this approach to examine the water and food system in the Punjab province of the Indus River Basin in Pakistan, exploring how food production has been sustained, despite high population growth, periodic floods, and frequent political and economic disruptions. Using network models of five periods spanning 75 y (1947 to 2022), we examine how quantitative metrics of network structure relate to observed sustainability-relevant outcomes and how potential interventions in the system affect these quantitative metrics. We find that the persistent centrality of some and evolving centrality of other key nodes, coupled with the increasing number and length of pathways connecting them, are associated with sustaining food production in the system over time. Our assessment of potential interventions shows that regulating groundwater pumping and phasing out fossil fuels alters network pathways, and helps identify potential vulnerabilities for future food production.


Asunto(s)
Abastecimiento de Alimentos , Pakistán , Humanos , Ríos , Agricultura , Conservación de los Recursos Naturales
2.
Proc Natl Acad Sci U S A ; 120(40): e2216656120, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37751553

RESUMEN

This Perspective evaluates recent progress in modeling nature-society systems to inform sustainable development. We argue that recent work has begun to address longstanding and often-cited challenges in bringing modeling to bear on problems of sustainable development. For each of four stages of modeling practice-defining purpose, selecting components, analyzing interactions, and assessing interventions-we highlight examples of dynamical modeling methods and advances in their application that have improved understanding and begun to inform action. Because many of these methods and associated advances have focused on particular sectors and places, their potential to inform key open questions in the field of sustainability science is often underappreciated. We discuss how application of such methods helps researchers interested in harnessing insights into specific sectors and locations to address human well-being, focus on sustainability-relevant timescales, and attend to power differentials among actors. In parallel, application of these modeling methods is helping to advance theory of nature-society systems by enhancing the uptake and utility of frameworks, clarifying key concepts through more rigorous definitions, and informing development of archetypes that can assist hypothesis development and testing. We conclude by suggesting ways to further leverage emerging modeling methods in the context of sustainability science.

3.
Environ Sci Technol ; 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38328901

RESUMEN

Deforestation reduces the capacity of the terrestrial biosphere to take up toxic pollutant mercury (Hg) and enhances the release of secondary Hg from soils. The consequences of deforestation for Hg cycling are not currently considered by anthropogenic emission inventories or specifically addressed under the global Minamata Convention on Mercury. Using global Hg modeling constrained by field observations, we estimate that net Hg fluxes to the atmosphere due to deforestation are 217 Mg year-1 (95% confidence interval (CI): 134-1650 Mg year-1) for 2015, approximately 10% of global primary anthropogenic emissions. If deforestation of the Amazon rainforest continues at business-as-usual rates, net Hg emissions from the region will increase by 153 Mg year-1 by 2050 (CI: 97-418 Mg year-1), enhancing the transport and subsequent deposition of Hg to aquatic ecosystems. Substantial Hg emissions reductions are found for two potential cases of land use policies: conservation of the Amazon rainforest (92 Mg year-1, 95% CI: 59-234 Mg year-1) and global reforestation (98 Mg year-1, 95% CI: 64-449 Mg year-1). We conclude that deforestation-related emissions should be incorporated as an anthropogenic source in Hg inventories and that land use policy could be leveraged to address global Hg pollution.

4.
Proc Natl Acad Sci U S A ; 120(33): e2310784120, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37531374
5.
Environ Sci Technol ; 54(24): 15584-15593, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33263386

RESUMEN

Sustainability policies are often motivated by the potential to achieve multiple goals, such as simultaneously mitigating the climate change and air quality impacts of energy use. Ex ante analysis is used prospectively to inform policy decisions by estimating a policy's impact on multiple objectives. In contrast, ex post analysis of impacts that may have multiple causes can retrospectively evaluate the effectiveness of policies. Ex ante analyses are rarely compared with ex post evaluations of the same policy. These comparisons can assess the realism of assumptions in ex ante methods and reveal opportunities for improving prospective analyses. We illustrate the benefits of such a comparison by examining a case of two energy policies in China. Using ex post analysis, we estimate the impacts of two policies, one that targets energy intensity and another that imposes quantitative targets on SO2 emissions, on energy use and pollution outcomes in two major energy-intensive industrial sectors (cement, iron and steel) in China. We find that the ex post effects of the energy intensity policy on both energy and pollution outcomes are very limited on average, while the effects of the SO2 emissions policy are large. Compared with ex ante analysis, ex post estimates of benefits of the energy intensity policy are on average smaller, and differ by location in both sign and magnitude. Accounting for firm-level heterogeneity in production processes and policy responses, as well as the use of empirically grounded counterfactual baselines, can improve the realism of ex ante analysis and thus provide a more reliable basis for policy design.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire/prevención & control , China , Estudios Prospectivos , Política Pública , Estudios Retrospectivos
6.
Environ Sci Technol ; 54(3): 1326-1335, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31899622

RESUMEN

National commitments under the Paris Agreement on climate change interact with other global environmental objectives, such as those of the Minamata Convention on Mercury. We assess how mercury emissions and deposition reductions from national climate policy in China under the Paris Agreement could contribute to the country's commitments under the Minamata Convention. We examine emissions under climate policy scenarios developed using a computable general equilibrium model of China's economy, end-of-pipe control scenarios that meet China's commitments under the Minamata Convention, and these policies in combination, and evaluate deposition using a global atmospheric transport model. We find climate policy in China can provide mercury benefits when implemented with Minamata policy, achieving in the year 2030 approximately 5% additional reduction in mercury emissions and deposition in China when climate policy achieves a 5% reduction per year in carbon intensity (CO2 emissions 9.7 Gt in 2030). This corresponds to 63 Mg additional mercury emissions reductions in 2030 when implemented with Minamata Convention policy, compared to Minamata policy implemented alone. Climate policy provides emissions reductions in sectors not considered under the Minamata Convention, such as residential combustion. This changes the combination of sectors that contribute to emissions reductions.


Asunto(s)
Mercurio , China , Cambio Climático , Políticas
7.
Front Ecol Environ ; 17(7): 375-382, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31875865

RESUMEN

Maintaining the continued flow of benefits from science, as well as societal support for science, requires sustained engagement between the research community and the general public. On the basis of data from an international survey of 1092 participants (634 established researchers and 458 students) in 55 countries and 315 research institutions, we found that institutional recognition of engagement activities is perceived to be undervalued relative to the societal benefit of those activities. Many researchers report that their institutions do not reward engagement activities despite institutions' mission statements promoting such engagement. Furthermore, institutions that actually measure engagement activities do so only to a limited extent. Most researchers are strongly motivated to engage with the public for selfless reasons, which suggests that incentives focused on monetary benefits or career progress may not align with researchers' values. If institutions encourage researchers' engagement activities in a more appropriate way - by moving beyond incentives - they might better achieve their institutional missions and bolster the crucial contributions of researchers to society.

8.
Proc Natl Acad Sci U S A ; 113(2): 286-91, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26712021

RESUMEN

Mercury pollution poses risks for both human and ecosystem health. As a consequence, controlling mercury pollution has become a policy goal on both global and national scales. We developed an assessment method linking global-scale atmospheric chemical transport modeling to regional-scale economic modeling to consistently evaluate the potential benefits to the United States of global (UN Minamata Convention on Mercury) and domestic [Mercury and Air Toxics Standards (MATS)] policies, framed as economic gains from avoiding mercury-related adverse health endpoints. This method attempts to trace the policies-to-impacts path while taking into account uncertainties and knowledge gaps with policy-appropriate bounding assumptions. We project that cumulative lifetime benefits from the Minamata Convention for individuals affected by 2050 are $339 billion (2005 USD), with a range from $1.4 billion to $575 billion in our sensitivity scenarios. Cumulative economy-wide benefits to the United States, realized by 2050, are $104 billion, with a range from $6 million to $171 billion. Projected Minamata benefits are more than twice those projected from the domestic policy. This relative benefit is robust to several uncertainties and variabilities, with the ratio of benefits (Minamata/MATS) ranging from ≈1.4 to 3. However, we find that for those consuming locally caught freshwater fish from the United States, rather than marine and estuarine fish from the global market, benefits are larger from US than global action, suggesting domestic policies are important for protecting these populations. Per megagram of prevented emissions, our domestic policy scenario results in US benefits about an order of magnitude higher than from our global scenario, further highlighting the importance of domestic action.


Asunto(s)
Contaminación Ambiental/prevención & control , Mercurio/análisis , Humanos , Internacionalidad , Japón , Políticas , Estados Unidos
9.
Environ Sci Technol ; 52(22): 12968-12977, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30376303

RESUMEN

Mercury (Hg) is emitted to air by natural and anthropogenic sources, transports and deposits globally, and bioaccumulates to toxic levels in food webs. It is addressed under the global 2017 Minamata Convention, for which periodic effectiveness evaluation is required. Previous analyses have estimated the impact of different regulatory strategies for future mercury deposition. However, analyses using atmospheric models traditionally hold legacy emissions (recycling of previously deposited Hg) constant, and do not account for their possible future growth. Here, using an integrated modeling approach, we investigate how delays in implementing emissions reductions and the associated growing legacy reservoir affect deposition fluxes to ecosystems in different global regions. Assuming nearly constant yearly emissions relative to 2010, each 5-year delay in peak emissions defers by additional extra ca. 4 years the return to year 2010 global deposition. On a global average, each 5-year delay leads to a 14% decrease in policy impacts on local-scale Hg deposition. We also investigate the response of fish contamination in remote lakes to delayed action. We quantify the consequences of delay for limiting the Hg burden of future generations and show that traditional analyses of policy impacts provide best-case estimates.


Asunto(s)
Mercurio , Animales , Ecosistema , Monitoreo del Ambiente , Peces , Lagos
10.
Environ Sci Technol ; 52(17): 9556-9561, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30067020

RESUMEN

Mercury is a global pollutant released into the biosphere by varied human activities including coal combustion, mining, artisanal gold mining, cement production, and chemical production. Once released to air, land and water, the addition of carbon atoms to mercury by bacteria results in the production of methylmercury, the toxic form that bioaccumulates in aquatic and terrestrial food chains resulting in elevated exposure to humans and wildlife. Global recognition of the mercury contamination problem has resulted in the Minamata Convention on Mercury, which came into force in 2017. The treaty aims to protect human health and the environment from human-generated releases of mercury curtailing its movement and transformations in the biosphere. Coincident with the treaty's coming into force, the 13th International Conference of Mercury as a Global Pollutant (ICMGP-13) was held in Providence, Rhode Island USA. At ICMGP-13, cutting edge research was summarized and presented to address questions relating to global and regional sources and cycling of mercury, how that mercury is methylated, the effects of mercury exposure on humans and wildlife, and the science needed for successful implementation of the Minamata Convention. Human activities have the potential to enhance mercury methylation by remobilizing previously released mercury, and increasing methylation efficiency. This synthesis concluded that many of the most important factors influencing the fate and effects of mercury and its more toxic form, methylmercury, stem from environmental changes that are much broader in scope than mercury releases alone. Alterations of mercury cycling, methylmercury bioavailability and trophic transfer due to climate and land use changes remain critical uncertainties in effective implementation of the Minamata Convention. In the face of these uncertainties, important policy and management actions are needed over the short-term to support the control of mercury releases to land, water and air. These include adequate monitoring and communication on risk from exposure to various forms of inorganic mercury as well as methylmercury from fish and rice consumption. Successful management of global and local mercury pollution will require integration of mercury research and policy in a changing world.


Asunto(s)
Contaminantes Ambientales , Mercurio , Compuestos de Metilmercurio , Animales , Contaminación Ambiental , Humanos , Rhode Island
11.
Environ Sci Technol ; 51(4): 1953-1961, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28075579

RESUMEN

Low-income households may be disproportionately affected by ozone pollution and ozone policy. We quantify how three factors affect the relative benefits of ozone policies with household income: (1) unequal ozone reductions; (2) policy delay; and (3) economic valuation methods. We model ozone concentrations under baseline and policy conditions across the full continental United States to estimate the distribution of ozone-related health impacts across nine income groups. We enhance an economic model to include these impacts across household income categories, and present its first application to evaluate the benefits of ozone reductions for low-income households. We find that mortality incidence rates decrease with increasing income. Modeled ozone levels yield a median of 11 deaths per 100 000 people in 2005. Proposed policy reduces these rates by 13%. Ozone reductions are highest among low-income households, which increases their relative welfare gains by up to 4% and decreases them for the rich by up to 8%. The median value of reductions in 2015 is either $30 billion (in 2006 U.S. dollars) or $1 billion if reduced mortality risks are valued with willingness-to-pay or as income from increased life expectancy. Ozone reductions were relatively twice as beneficial for the lowest- compared to the highest-income households. The valuation approach affected benefits more than a policy delay or differential ozone reductions with income.


Asunto(s)
Renta , Ozono , Humanos , Modelos Teóricos , Pobreza , Factores Socioeconómicos , Estados Unidos
12.
Environ Sci Technol ; 50(17): 9026-33, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27494542

RESUMEN

In the United States, general aviation piston-driven aircraft are now the largest source of lead emitted to the atmosphere. Elevated lead concentrations impair children's IQ and can lead to lower earnings potentials. This study is the first assessment of the nationwide annual costs of IQ losses from aircraft lead emissions. We develop a general aviation emissions inventory for the continental United States and model its impact on atmospheric concentrations using the community multi-scale air quality model (CMAQ). We use these concentrations to quantify the impacts of annual aviation lead emissions on the U.S. population using two methods: through static estimates of cohort-wide IQ deficits and through dynamic economy-wide effects using a computational general equilibrium model. We also examine the sensitivity of these damage estimates to different background lead concentrations, showing the impact of lead controls and regulations on marginal costs. We find that aircraft-attributable lead contributes to $1.06 billion 2006 USD ($0.01-$11.6) in annual damages from lifetime earnings reductions, and that dynamic economy-wide methods result in damage estimates that are 54% larger. Because the marginal costs of lead are dependent on background concentration, the costs of piston-driven aircraft lead emissions are expected to increase over time as regulations on other emissions sources are tightened.


Asunto(s)
Aviación , Gasolina , Inteligencia , Emisiones de Vehículos , Contaminantes Atmosféricos , Aeronaves , Atmósfera , Humanos , Plomo , Estados Unidos
14.
Environ Sci Technol ; 49(8): 4834-41, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25816113

RESUMEN

We examined the impact of large US emissions changes, similar to those estimated to have occurred between 2005 and 2012 (high and low emissions cases, respectively), on inorganic PM2.5 sensitivities to further NOx, SO2, and NH3 emissions reductions using the chemical transport model GEOS-Chem. Sensitivities to SO2 emissions are larger year-round and across the US in the low emissions case than the high emissions case due to more aqueous-phase SO2 oxidation. Sensitivities to winter NOx emissions are larger in the low emissions case, more than 2× those of the high emissions case in parts of the northern Midwest. Sensitivities to NH3 emissions are smaller (∼40%) in the low emissions case, year-round, and across the US. Differences in NOx and NH3 sensitivities indicate an altered atmospheric acidity. Larger sensitivities to SO2 and NOx in the low emissions case imply that reducing these emissions may improve air quality more now than they would have in 2005; conversely, NH3 reductions may not improve air quality as much as previously assumed.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Modelos Teóricos , Óxidos de Nitrógeno/análisis , Tamaño de la Partícula , Estaciones del Año , Dióxido de Azufre/análisis , Estados Unidos
15.
Environ Sci Technol ; 49(13): 7580-8, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26053628

RESUMEN

We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.


Asunto(s)
Contaminación del Aire/efectos adversos , Política Ambiental , Modelos Teóricos , Salud Pública , Contaminación del Aire/análisis , Cambio Climático , Política Ambiental/economía , Política Ambiental/tendencias , Predicción , Efecto Invernadero , Ozono/análisis , Material Particulado/análisis , Estados Unidos
16.
Environ Sci Technol ; 49(15): 9185-93, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26110215

RESUMEN

We quantitatively examine the relative importance of uncertainty in emissions and physicochemical properties (including reaction rate constants) to Northern Hemisphere (NH) and Arctic polycyclic aromatic hydrocarbon (PAH) concentrations, using a computationally efficient numerical uncertainty technique applied to the global-scale chemical transport model GEOS-Chem. Using polynomial chaos (PC) methods, we propagate uncertainties in physicochemical properties and emissions for the PAHs benzo[a]pyrene, pyrene and phenanthrene to simulated spatially resolved concentration uncertainties. We find that the leading contributors to parametric uncertainty in simulated concentrations are the black carbon-air partition coefficient and oxidation rate constant for benzo[a]pyrene, and the oxidation rate constants for phenanthrene and pyrene. NH geometric average concentrations are more sensitive to uncertainty in the atmospheric lifetime than to emissions rate. We use the PC expansions and measurement data to constrain parameter uncertainty distributions to observations. This narrows a priori parameter uncertainty distributions for phenanthrene and pyrene, and leads to higher values for OH oxidation rate constants and lower values for European PHE emission rates.


Asunto(s)
Contaminantes Ambientales/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Incertidumbre , Regiones Árticas , Benzo(a)pireno/análisis , Simulación por Computador , Modelos Químicos , Modelos Teóricos , Fenantrenos/análisis , Pirenos/análisis
17.
Environ Sci Technol ; 49(9): 5326-35, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25851589

RESUMEN

We explore implications of the United Nations Minamata Convention on Mercury for emissions from Asian coal-fired power generation, and resulting changes to deposition worldwide by 2050. We use engineering analysis, document analysis, and interviews to construct plausible technology scenarios consistent with the Convention. We translate these scenarios into emissions projections for 2050, and use the GEOS-Chem model to calculate global mercury deposition. Where technology requirements in the Convention are flexibly defined, under a global energy and development scenario that relies heavily on coal, we project ∼90 and 150 Mg·y(-1) of avoided power sector emissions for China and India, respectively, in 2050, compared to a scenario in which only current technologies are used. Benefits of this avoided emissions growth are primarily captured regionally, with projected changes in annual average gross deposition over China and India ∼2 and 13 µg·m(-2) lower, respectively, than the current technology case. Stricter, but technologically feasible, mercury control requirements in both countries could lead to a combined additional 170 Mg·y(-1) avoided emissions. Assuming only current technologies but a global transition away from coal avoids 6% and 36% more emissions than this strict technology scenario under heavy coal use for China and India, respectively.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral/análisis , Mercurio/análisis , Centrales Eléctricas , China , Electricidad , India , Internacionalidad , Japón , Modelos Teóricos , Estados Unidos
18.
J Air Waste Manag Assoc ; 65(1): 74-89, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25946960

RESUMEN

Air quality co-benefits can potentially reduce the costs of greenhouse gas mitigation. However, whereas many studies of the cost of greenhouse gas mitigation model the macroeconomic welfare impacts of mitigation, most studies of air quality co-benefits do not. We employ a U.S. computable general equilibrium economic model previously linked to an air quality modeling system and enhance it to represent the economy-wide welfare impacts of fine particulate matter. We present a first application of this method to explore the efficiency and distributional implications of a Clean Energy Standard (CES) and a Cap and Trade (CAT) program that both reduce CO2emissions by 10% in 2030 relative to 2006. We find that co-benefits from fine particulate matter reduction (median $6; $2 to $10/tCO2) completely offset policy costs by 110% (40% to 190%), transforming the net welfare impact of the CAT into a gain of $1 (-$5 to $7) billion 2005$. For the CES, the corresponding co-benefit (median $8; $3 to $14/tCO2) is a smaller fraction (median 5%; 2% to 9%) of its higher policy cost. The eastern United States garners 78% and 71% of co-benefits for the CES and CAT, respectively. By representing the effects of pollution-related morbidities and mortalities as an impact to labor and the demand for health services, we find that the welfare impact per unit of reduced pollution varies by region. These interregional differences can enhance the preference of some regions, such as Texas, for a CAT over a CES, or switch the calculation of which policy yields higher co-benefits, compared with an approach that uses one valuation for all regions. This framework could be applied to quantify consistent air quality impacts of other pricing instruments, subnational trading programs, or green tax swaps.


Asunto(s)
Contaminación del Aire/economía , Contaminación del Aire/legislación & jurisprudencia , Calentamiento Global/legislación & jurisprudencia , Modelos Económicos , Contaminación del Aire/efectos adversos , Contaminación del Aire/prevención & control , Clima , Calentamiento Global/prevención & control , Humanos , Material Particulado/economía , Estados Unidos
19.
Environ Sci Technol ; 48(1): 429-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24279957

RESUMEN

We investigate effects of 2000-2050 emissions and climate changes on the atmospheric transport of three polycyclic aromatic hydrocarbons (PAHs): phenanthrene (PHE), pyrene (PYR), and benzo[a]pyrene (BaP). We use the GEOS-Chem model coupled to meteorology from a general circulation model and focus on impacts to northern hemisphere midlatitudes and the Arctic. We project declines in anthropogenic emissions (up to 20%) and concentrations (up to 37%), with particle-bound PAHs declining more, and greater declines in midlatitudes versus the Arctic. Climate change causes relatively minor increases in midlatitude concentrations for the more volatile PHE and PYR (up to 4%) and decreases (3%) for particle-bound BaP. In the Arctic, all PAHs decline slightly under future climate (up to 2%). Overall, we observe a small 2050 "climate penalty" for volatile PAHs and "climate benefit" for particle-bound PAHs. The degree of penalty or benefit depends on competition between deposition and surface-to-air fluxes of previously deposited PAHs. Particles and temperature have greater impacts on future transport than oxidants, with particle changes alone accounting for 15% of BaP decline under 2050 emissions. Higher temperatures drive increasing surface-to-air fluxes that cause PHE and PYR climate penalties. Simulations suggest ratios of more-to-less volatile species can be used to diagnose signals of climate versus emissions and that these signals are best observed in the Arctic.


Asunto(s)
Contaminantes Atmosféricos/análisis , Benzo(a)pireno/análisis , Cambio Climático , Fenantrenos/análisis , Pirenos/análisis , Regiones Árticas , Monitoreo del Ambiente , Industria Procesadora y de Extracción , Modelos Teóricos , Petróleo , Navíos
20.
Environ Health ; 12: 2, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-23289850

RESUMEN

In their new paper, Bellanger and coauthors show substantial economic impacts to the EU from neurocognitive impairment associated with methylmercury (MeHg) exposures. The main source of MeHg exposure is seafood consumption, including many marine species harvested from the global oceans. Fish, birds and other wildlife are also susceptible to the impacts of MeHg and already exceed toxicological thresholds in vulnerable regions like the Arctic. Most future emissions scenarios project a growth or stabilization of anthropogenic mercury releases relative to present-day levels. At these emissions levels, inputs of mercury to ecosystems are expected to increase substantially in the future, in part due to growth in the legacy reservoirs of mercury in oceanic and terrestrial ecosystems. Seawater mercury concentration trajectories in areas such as the North Pacific Ocean that supply large quantities of marine fish to the global seafood market are projected to increase by more than 50% by 2050. Fish mercury levels and subsequent human and biological exposures are likely to also increase because production of MeHg in ocean ecosystems is driven by the supply of available inorganic mercury, among other factors. Analyses that only consider changes in primary anthropogenic emissions are likely to underestimate the severity of future deposition and concentration increases associated with growth in mercury reservoirs in the land and ocean. We therefore recommend that future policy analyses consider the fully coupled interactions among short and long-lived reservoirs of mercury in the atmosphere, ocean, and terrestrial ecosystems. Aggressive anthropogenic emission reductions are needed to reduce MeHg exposures and associated health impacts on humans and wildlife and protect the integrity of one of the last wild-food sources globally. In the near-term, public health advice on safe fish consumption choices such as smaller species, younger fish, and harvests from relatively unpolluted ecosystems is needed to minimize exposure risks.


Asunto(s)
Exposición a Riesgos Ambientales/economía , Contaminantes Ambientales/análisis , Cabello/química , Compuestos de Metilmercurio/análisis , Síndromes de Neurotoxicidad/economía , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA