RESUMEN
Our understanding of tumorigenesis and cancer progression as well as clinical therapies for different cancer types have evolved dramatically in recent years. However, even with this progress, there are big challenges for scientists and oncologists to tackle, ranging from unpacking the molecular and cellular mechanisms involved to therapeutics and biomarker development to quality of life in the aftermath of therapy. In this article, we asked researchers to comment on the questions that they think are important to address in the coming years.
Asunto(s)
Neoplasias , Investigadores , Humanos , Carcinogénesis , Neoplasias/sangre , Neoplasias/patología , Neoplasias/terapia , Calidad de Vida , Investigación , Biomarcadores de Tumor/sangreRESUMEN
Proteins are essential agents of biological processes. To date, large-scale profiling of cell line collections including the Cancer Cell Line Encyclopedia (CCLE) has focused primarily on genetic information whereas deep interrogation of the proteome has remained out of reach. Here, we expand the CCLE through quantitative profiling of thousands of proteins by mass spectrometry across 375 cell lines from diverse lineages to reveal information undiscovered by DNA and RNA methods. We observe unexpected correlations within and between pathways that are largely absent from RNA. An analysis of microsatellite instable (MSI) cell lines reveals the dysregulation of specific protein complexes associated with surveillance of mutation and translation. These and other protein complexes were associated with sensitivity to knockdown of several different genes. These data in conjunction with the wider CCLE are a broad resource to explore cellular behavior and facilitate cancer research.
Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Neoplasias/metabolismo , Proteoma/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica/métodos , Humanos , Espectrometría de Masas/métodos , Inestabilidad de Microsatélites , Mutación/genética , Proteómica/métodosRESUMEN
PRMT5 is an essential arginine methyltransferase and a therapeutic target in MTAP-null cancers. PRMT5 uses adaptor proteins for substrate recruitment through a previously undefined mechanism. Here, we identify an evolutionarily conserved peptide sequence shared among the three known substrate adaptors (CLNS1A, RIOK1, and COPR5) and show that it is necessary and sufficient for interaction with PRMT5. We demonstrate that PRMT5 uses modular adaptor proteins containing a common binding motif for substrate recruitment, comparable with other enzyme classes such as kinases and E3 ligases. We structurally resolve the interface with PRMT5 and show via genetic perturbation that it is required for methylation of adaptor-recruited substrates including the spliceosome, histones, and ribosomal complexes. Furthermore, disruption of this site affects Sm spliceosome activity, leading to intron retention. Genetic disruption of the PRMT5-substrate adaptor interface impairs growth of MTAP-null tumor cells and is thus a site for development of therapeutic inhibitors of PRMT5.
Asunto(s)
Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína-Arginina N-Metiltransferasas/fisiología , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Femenino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Canales Iónicos/metabolismo , Masculino , Metilación , Ratones , Ratones Desnudos , Proteínas Nucleares/metabolismo , Péptidos/genética , Unión Proteica , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Empalmosomas/metabolismoRESUMEN
Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.
Asunto(s)
Biotinilación , Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/química , Humanos , Ubiquitina/metabolismo , Ubiquitina/química , Especificidad por Sustrato , Células HEK293 , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo , ProteolisisRESUMEN
In the era of next-generation sequencing, there are significant challenges to harnessing cancer genome information to develop novel therapies. Key research thrusts in both academia and industry will speed this transition, and lessons learned for cancer will more broadly shape the process for genetic contributions to the therapy of disease more broadly.
Asunto(s)
Genoma Humano , Neoplasias/genética , Neoplasias/terapia , Aberraciones Cromosómicas , Humanos , MutaciónRESUMEN
[This corrects the article DOI: 10.1371/journal.pmed.0020313.].
RESUMEN
Chronic myeloid leukaemia (CML) is driven by the activity of the BCR-ABL1 fusion oncoprotein. ABL1 kinase inhibitors have improved the clinical outcomes for patients with CML, with over 80% of patients treated with imatinib surviving for more than 10 years. Second-generation ABL1 kinase inhibitors induce more potent molecular responses in both previously untreated and imatinib-resistant patients with CML. Studies in patients with chronic-phase CML have shown that around 50% of patients who achieve and maintain undetectable BCR-ABL1 transcript levels for at least 2 years remain disease-free after the withdrawal of treatment. Here we characterize ABL001 (asciminib), a potent and selective allosteric ABL1 inhibitor that is undergoing clinical development testing in patients with CML and Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukaemia. In contrast to catalytic-site ABL1 kinase inhibitors, ABL001 binds to the myristoyl pocket of ABL1 and induces the formation of an inactive kinase conformation. ABL001 and second-generation catalytic inhibitors have similar cellular potencies but distinct patterns of resistance mutations, with genetic barcoding studies revealing pre-existing clonal populations with no shared resistance between ABL001 and the catalytic inhibitor nilotinib. Consistent with this profile, acquired resistance was observed with single-agent therapy in mice; however, the combination of ABL001 and nilotinib led to complete disease control and eradicated CML xenograft tumours without recurrence after the cessation of treatment.
Asunto(s)
Sitio Alostérico/efectos de los fármacos , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Niacinamida/análogos & derivados , Pirazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Animales , Dominio Catalítico/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dasatinib/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Quimioterapia Combinada , Proteínas de Fusión bcr-abl/química , Proteínas de Fusión bcr-abl/genética , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/enzimología , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Ratones , Mutación , Niacinamida/farmacología , Niacinamida/uso terapéutico , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Reliable methods to quantify dynamic signaling changes across diverse pathways are needed to better understand the effects of disease and drug treatment in cells and tissues but are presently lacking. Here, we present SigPath, a targeted mass spectrometry (MS) assay that measures 284 phosphosites in 200 phosphoproteins of biological interest. SigPath probes a broad swath of signaling biology with high throughput and quantitative precision. We applied the assay to investigate changes in phospho-signaling in drug-treated cancer cell lines, breast cancer preclinical models, and human medulloblastoma tumors. In addition to validating previous findings, SigPath detected and quantified a large number of differentially regulated phosphosites newly associated with disease models and human tumors at baseline or with drug perturbation. Our results highlight the potential of SigPath to monitor phosphoproteomic signaling events and to nominate mechanistic hypotheses regarding oncogenesis, response, and resistance to therapy.
Asunto(s)
Fosfoproteínas , Proteómica , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Transducción de SeñalRESUMEN
Inhibitors of double minute 2 protein (MDM2)-tumor protein 53 (TP53) interaction are predicted to be effective in tumors in which the TP53 gene is wild type, by preventing TP53 protein degradation. One such setting is represented by the frequent CDKN2A deletion in human cancer that, through inactivation of p14ARF, activates MDM2 protein, which in turn degrades TP53 tumor suppressor. Here we used piggyBac (PB) transposon insertional mutagenesis to anticipate resistance mechanisms occurring during treatment with the MDM2-TP53 inhibitor HDM201. Constitutive PB mutagenesis in Arf-/- mice provided a collection of spontaneous tumors with characterized insertional genetic landscapes. Tumors were allografted in large cohorts of mice to assess the pharmacologic effects of HDM201. Sixteen out of 21 allograft models were sensitive to HDM201 but ultimately relapsed under treatment. A comparison of tumors with acquired resistance to HDM201 and untreated tumors identified 87 genes that were differentially and significantly targeted by the PB transposon. Resistant tumors displayed a complex clonality pattern suggesting the emergence of several resistant subclones. Among the most frequent alterations conferring resistance, we observed somatic and insertional loss-of-function mutations in transformation-related protein 53 (Trp53) in 54% of tumors and transposon-mediated gain-of-function alterations in B-cell lymphoma-extra large (Bcl-xL), Mdm4, and two TP53 family members, resulting in expression of the TP53 dominant negative truncations ΔNTrp63 and ΔNTrp73. Enhanced BCL-xL and MDM4 protein expression was confirmed in resistant tumors, as well as in HDM201-resistant patient-derived tumor xenografts. Interestingly, concomitant inhibition of MDM2 and BCL-xL demonstrated significant synergy in p53 wild-type cell lines in vitro. Collectively, our findings identify several potential mechanisms by which TP53 wild-type tumors may escape MDM2-targeted therapy.
Asunto(s)
Elementos Transponibles de ADN , Resistencia a Antineoplásicos/genética , Vectores Genéticos/genética , Mutagénesis Insercional , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteína p53 Supresora de Tumor/genética , Aloinjertos , Animales , Antineoplásicos/farmacología , Biomarcadores de Tumor , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Flujo Genético , Humanos , Estimación de Kaplan-Meier , Ratones , Ratones Noqueados , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismoRESUMEN
Mutational activation of BRAF is the most prevalent genetic alteration in human melanoma, with ≥50% of tumours expressing the BRAF(V600E) oncoprotein. Moreover, the marked tumour regression and improved survival of late-stage BRAF-mutated melanoma patients in response to treatment with vemurafenib demonstrates the essential role of oncogenic BRAF in melanoma maintenance. However, as most patients relapse with lethal drug-resistant disease, understanding and preventing mechanism(s) of resistance is critical to providing improved therapy. Here we investigate the cause and consequences of vemurafenib resistance using two independently derived primary human melanoma xenograft models in which drug resistance is selected by continuous vemurafenib administration. In one of these models, resistant tumours show continued dependency on BRAF(V600E)âMEKâERK signalling owing to elevated BRAF(V600E) expression. Most importantly, we demonstrate that vemurafenib-resistant melanomas become drug dependent for their continued proliferation, such that cessation of drug administration leads to regression of established drug-resistant tumours. We further demonstrate that a discontinuous dosing strategy, which exploits the fitness disadvantage displayed by drug-resistant cells in the absence of the drug, forestalls the onset of lethal drug-resistant disease. These data highlight the concept that drug-resistant cells may also display drug dependency, such that altered dosing may prevent the emergence of lethal drug resistance. Such observations may contribute to sustaining the durability of the vemurafenib response with the ultimate goal of curative therapy for the subset of melanoma patients with BRAF mutations.
Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Indoles/administración & dosificación , Indoles/efectos adversos , Melanoma/tratamiento farmacológico , Melanoma/patología , Sulfonamidas/administración & dosificación , Sulfonamidas/efectos adversos , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Esquema de Medicación , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/genética , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Tejido Subcutáneo , Sulfonamidas/farmacología , Factores de Tiempo , Vemurafenib , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
A key goal of cancer therapeutics is to selectively target the genetic lesions that initiate and maintain cancer cell proliferation and survival. While most cancers harbor multiple oncogenic mutations, a wealth of preclinical and clinical data supports that many cancers are sensitive to inhibition of single oncogenes, a concept referred to as 'oncogene addiction'. Herein, we describe the clinical evidence supporting oncogene addiction and discuss common mechanistic themes emerging from the response and acquired resistance to oncogene-targeted therapies. Finally, we suggest several opportunities toward exploiting oncogene addiction to achieve curative cancer therapies.
Asunto(s)
Antineoplásicos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/genética , Neoplasias/genética , Oncogenes/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/fisiología , Genes Esenciales/genética , Humanos , Modelos Biológicos , Oncogenes/genéticaRESUMEN
Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50-70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma-an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative 'druggable' targets may inform effective long-term treatment strategies. Here we expressed â¼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.
Asunto(s)
Resistencia a Antineoplásicos , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Regulación Alostérica , Línea Celular Tumoral , Ensayos Clínicos como Asunto , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Activación Enzimática/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Biblioteca de Genes , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Quinasas Quinasa Quinasa PAM/genética , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Melanoma/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Sistemas de Lectura Abierta/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas B-raf/química , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Sulfonamidas/farmacología , Sulfonamidas/uso terapéutico , VemurafenibRESUMEN
Many cancer cells have increased rates of aerobic glycolysis, a phenomenon termed the Warburg effect. In addition, in tumors there is a predominance of expression of the M2 isoform of pyruvate kinase (PKM2). M2 expression was previously shown to be necessary for aerobic glycolysis and to provide a growth advantage to tumors. We report that knockdown of pyruvate kinase in tumor cells leads to a decrease in the levels of pyruvate kinase activity and an increase in the pyruvate kinase substrate phosphoenolpyruvate. However, lactate production from glucose, although reduced, was not fully inhibited. Furthermore, we are unique in reporting increased serine and glycine biosynthesis from both glucose and glutamine following pyruvate kinase knockdown. Although pyruvate kinase knockdown results in modest impairment of proliferation in vitro, in vivo growth of established xenograft tumors is unaffected by PKM2 absence. Our findings indicate that PKM2 is dispensable for tumor maintenance and growth in vivo, suggesting that other metabolic pathways bypass its function.
Asunto(s)
Glucólisis/fisiología , Neoplasias/fisiopatología , Piruvato Quinasa/metabolismo , Isótopos de Carbono/metabolismo , Línea Celular Tumoral , Cromatografía por Intercambio Iónico , Cartilla de ADN/genética , Técnicas de Silenciamiento del Gen , Humanos , Immunoblotting , Ácido Láctico/metabolismo , Espectroscopía de Resonancia Magnética , Fosfoenolpiruvato/metabolismo , Piruvato Quinasa/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en TándemRESUMEN
Wnt signaling is one of the key oncogenic pathways in multiple cancers, and targeting this pathway is an attractive therapeutic approach. However, therapeutic success has been limited because of the lack of therapeutic agents for targets in the Wnt pathway and the lack of a defined patient population that would be sensitive to a Wnt inhibitor. We developed a screen for small molecules that block Wnt secretion. This effort led to the discovery of LGK974, a potent and specific small-molecule Porcupine (PORCN) inhibitor. PORCN is a membrane-bound O-acyltransferase that is required for and dedicated to palmitoylation of Wnt ligands, a necessary step in the processing of Wnt ligand secretion. We show that LGK974 potently inhibits Wnt signaling in vitro and in vivo, including reduction of the Wnt-dependent LRP6 phosphorylation and the expression of Wnt target genes, such as AXIN2. LGK974 is potent and efficacious in multiple tumor models at well-tolerated doses in vivo, including murine and rat mechanistic breast cancer models driven by MMTV-Wnt1 and a human head and neck squamous cell carcinoma model (HN30). We also show that head and neck cancer cell lines with loss-of-function mutations in the Notch signaling pathway have a high response rate to LGK974. Together, these findings provide both a strategy and tools for targeting Wnt-driven cancers through the inhibition of PORCN.
Asunto(s)
Proteínas de la Membrana/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Pirazinas/farmacología , Piridinas/farmacología , Vía de Señalización Wnt/efectos de los fármacos , Aciltransferasas , Animales , Proteína Axina/antagonistas & inhibidores , Western Blotting , Línea Celular Tumoral , Clonación Molecular , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Mutagénesis , Fosforilación/efectos de los fármacos , Pirazinas/uso terapéutico , Piridinas/uso terapéutico , Ensayo de Unión Radioligante , Ratas , Receptores Notch/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Although cell-lineage and differentiation models dominate tumour classification and treatment, the recognition that cancer is also a genomic disease has prompted a reconfiguration of cancer taxonomies according to molecular criteria. Recent evidence indicates that a synthesis of lineage-based and genetic paradigms might offer new insights into crucial and therapeutically pliable tumour dependencies. For example, MITF (microphthalmia-associated transcription factor), which is a master regulator of the melanocyte lineage, might become a melanoma oncogene when deregulated in certain genetic contexts. MITF and other lineage-survival genes therefore implicate lineage dependency (or lineage addiction) as a newly recognized mechanism that is affected by tumour genetic alterations.
Asunto(s)
Linaje de la Célula/genética , Neoplasias/genética , Oncogenes/genética , Humanos , Factor de Transcripción Asociado a Microftalmía/fisiología , Proteínas Oncogénicas/fisiologíaRESUMEN
Persistent expression of certain oncogenes is required for tumor maintenance. This phenotype is referred to as oncogene addiction and has been clinically validated by anticancer therapies that specifically inhibit oncoproteins such as BCR-ABL, c-Kit, HER2, PDGFR, and EGFR. Identifying additional genes that are required for tumor maintenance may lead to new targets for anticancer drugs. Although the role of aberrant Wnt pathway activation in the initiation of colorectal cancer has been clearly established, it remains unclear whether sustained Wnt pathway activation is required for colorectal tumor maintenance. To address this question, we used inducible ß-catenin shRNAs to temporally control Wnt pathway activation in vivo. Here, we show that active Wnt/ß-catenin signaling is required for maintenance of colorectal tumor xenografts harboring APC mutations. Reduced tumor growth upon ß-catenin inhibition was due to cell cycle arrest and differentiation. Upon reactivation of the Wnt/ß-catenin pathway colorectal cancer cells resumed proliferation and reacquired a crypt progenitor phenotype. In human colonic adenocarcinomas, high levels of nuclear ß-catenin correlated with crypt progenitor but not differentiation markers, suggesting that the Wnt/ß-catenin pathway may also control colorectal tumor cell fate during the maintenance phase of tumors in patients. These results support efforts to treat human colorectal cancer by pharmacological inhibition of the Wnt/ß-catenin pathway.
Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Genes APC , Mutación , Vía de Señalización Wnt , beta Catenina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Animales , Ciclo Celular , Diferenciación Celular , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , ARN Interferente Pequeño/genética , Transducción de Señal , Trasplante Heterólogo , beta Catenina/antagonistas & inhibidores , beta Catenina/genéticaRESUMEN
Translocations involving FGFR2 gene fusions are common in cholangiocarcinoma and predict response to FGFR kinase inhibitors. However, the rate and durability of response are limited due to the emergence of resistance, typically involving acquired FGFR2 kinase domain mutations, and to sub-optimal dosing, relating to drug adverse effects. Here, we report the development of biparatopic antibodies targeting the FGFR2 extracellular domain (ECD), as candidate therapeutics. Biparatopic antibodies can overcome drawbacks of standard bivalent monoparatopic antibodies, which often show poor inhibitory or even agonist activity against oncogenic receptors. We show that oncogenic transformation by FGFR2 fusions requires an intact ECD. Moreover, by systematically generating biparatopic antibodies that target distinct epitope pairs along the FGFR2 ECD, we identified antibodies that effectively block signaling and malignant growth driven by FGFR2-fusions. Importantly, these antibodies demonstrate efficacy in vivo, synergy with FGFR inhibitors, and activity against FGFR2 fusions harboring kinase domain mutations. Thus, biparatopic antibodies may serve as new treatment options for patients with FGFR2-altered cholangiocarcinoma. Summary: We identify biparatopic FGFR2 antibodies that are effective against FGFR2 fusion driven cholangiocarcinoma.
RESUMEN
Biliary tract cancers (BTCs) are a group of deadly malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we present the integrative analysis of 63 BTC cell lines via multi-omics clustering and genome- scale CRISPR screens, providing a platform to illuminate BTC biology and inform therapeutic development. We identify dependencies broadly enriched in BTC compared to other cancers as well as dependencies selective to the anatomic subtypes. Notably, cholangiocarcinoma cell lines are stratified into distinct lineage subtypes based on biliary or dual biliary/hepatocyte marker signatures, associated with dependency on specific lineage survival factors. Transcriptional analysis of patient specimens demonstrates the prognostic significance of these lineage subtypes. Additionally, we delineate strategies to enhance targeted therapies or to overcome resistance in cell lines with key driver gene mutations. Furthermore, clustering based on dependencies and proteomics data elucidates unexpected functional relationships, including a BTC subgroup with partial squamous differentiation. Thus, this cell line atlas reveals potential therapeutic targets in molecularly defined BTCs, unveils biologically distinct disease subtypes, and offers a vital resource for BTC research.
RESUMEN
The sensitivity of conventional DNA sequencing in tumor biopsies is limited by stromal contamination and by genetic heterogeneity within the cancer. Here, we show that microreactor-based pyrosequencing can detect rare cancer-associated sequence variations by independent and parallel sampling of multiple representatives of a given DNA fragment. This technology can thereby facilitate accurate molecular diagnosis of heterogeneous cancer specimens and enable patient selection for targeted cancer therapies.
Asunto(s)
Mapeo Cromosómico/métodos , ADN de Neoplasias/genética , Mutación , Neoplasias/genética , Secuencia de Bases , Humanos , Datos de Secuencia Molecular , Neoplasias/diagnóstico , Sensibilidad y EspecificidadRESUMEN
Polycythemia vera (PV), essential thrombocythemia (ET), and myeloid metaplasia with myelofibrosis (MMM) are clonal disorders arising from hematopoietic progenitors. An internet-based protocol was used to collect clinical information and biological specimens from patients with these diseases. High-throughput DNA resequencing identified a recurrent somatic missense mutation JAK2V617F in granulocyte DNA samples of 121 of 164 PV patients, of which 41 had homozygous and 80 had heterozygous mutations. Molecular and cytogenetic analyses demonstrated that homozygous mutations were due to duplication of the mutant allele. JAK2V617F was also identified in granulocyte DNA samples from 37 of 115 ET and 16 of 46 MMM patients, but was not observed in 269 normal individuals. In vitro analysis demonstrated that JAK2V617F is a constitutively active tyrosine kinase.