Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Chemistry ; 27(14): 4617-4626, 2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33350532

RESUMEN

Understanding the relationship between molecular design and packing modes constitutes one of the major challenges in self-assembly and is essential for the preparation of functional materials. Herein, we have achieved high precision control over the supramolecular packing of amphiphilic PtII complexes by systematic variation of the hydrophilic side-chain length. A novel approach of general applicability based on complementary X-ray diffraction and solid-state NMR spectroscopy has allowed us to establish a clear correlation between molecular features and supramolecular ordering. Systematically increasing the side-chain length gradually increases the steric demand and reduces the extent of aromatic interactions, thereby inducing a gradual shift in the molecular packing from parallel to a long-slipped organization. Notably, our findings highlight the necessity of advanced solid-state NMR techniques to gain structural information for supramolecular systems where single-crystal growth is not possible. Our work further demonstrates a new molecular design strategy to modulate aromatic interaction strengths and packing arrangements that could be useful for the engineering of functional materials based on PtII and aromatic molecules.

2.
Langmuir ; 34(44): 13375-13386, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30350703

RESUMEN

We have investigated the formation of lamellar crystals of poly(vinylidene fluoride) (PVDF) in the presence of oriented clay particles with different aspect ratios (ARs) and surface properties. Hot-melt screw extrusion of PVDF with 5 wt % of montmorillonite (AR ≈ 12) or fluoromica (AR ≈ 27) resulted in formation of phase-separated blends. Replacing the clays with their organoclay derivatives, organomontmorillonite or organofluoromica, resulted in the corresponding intercalated nanocomposites. The organoclays induced formation of polar ß- and γ-polymorphs of PVDF in contrast to the α-polymorph, which dominates in the pure PVDF and the PVDF/clay blends. Solid-state nuclear magnetic resonance revealed that the content of the α-phase in the nanocomposites was never higher than 7% of the total crystalline phase, whereas the ß/γ mass ratio was close to 1:2, irrespective of the AR or crystallization conditions. X-ray diffraction showed that the oriented particles with a larger AR caused orientation of the polar lamellar crystals of PVDF. In the presence of the organofluoromica, PVDF formed a chevron-like lamellar nanostructure, where the polymer chains are extended along the extrusion direction, whereas the lamellar crystals were slanted from normal to the extrusion direction. Time-resolved X-ray diffraction experiments allowed the identification of the formation mechanism of the chevron-like nanostructure.

3.
Chemistry ; 23(25): 6019-6028, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28464507

RESUMEN

Bifunctional mesoporous silica was prepared by co-condensation of tetraethyl orthosilicate (TEOS) with functionalized organosilanes containing azides or alkoxyamines. Orthogonal functional groups at the particles were selectively addressed in subsequent chemical modifications through "click"-chemistry ("click to ligand" strategy) and radical nitroxide exchange. Palladation with PdCl2 delivered Pd nanoparticle-loaded silica material bearing sulfoxides and additional aminoamides as stabilizing ligands by means of in situ reduction of the PdII -salt. These functional particles were successfully applied to the hydrogenation of alkynes and alkenes. Aldehyde hydrodeoxygenation and benzyl ether cleavage were achieved with these hybrid catalysts under mild conditions. Particles were analyzed by IR, TEM/STEM, EDX, and solid-state NMR spectroscopy.

4.
Chemistry ; 23(25): 6142-6149, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27788283

RESUMEN

Pervasive in Nature, the propane unit is an essential component of numerous bioactive molecules. These range from acyclic systems, such as the neurotransmitter γ-aminobutyric acid, through to the bicyclic nuclei of various chromanes and dihydrobenzofurans. In the latter case, cyclisation via cyclic ether formation ensures a highly pre-organised structure, whilst linear scaffolds display more dynamic conformational behaviour resulting from rotation about the two internal C(sp3 )-C(sp3 ) bonds. In this study, the replacement of -[CH2 ]- units by -[CHF]- centres is evaluated as a strategy to achieve acyclic conformational control by hindering these internal rotations. Reinforcing, non-covalent fluorine interactions are validated as powerful design features that result in programmable conformational behaviours: These are encoded by the relative configuration of each centre. By exploiting cooperative neighbouring stereoelectronic effects in a multi-vicinal fluoroalkane it is possible to emulate the overall conformation of the dihydrobenzofuran scaffold found in a variety of natural products with an acyclic mimic. This is described as a function of two bond vectors at the chain termini and validated by combined theoretical, crystallographic and spectroscopic analyses. In view of the favourable physicochemical properties associated with fluorine introduction, this approach to bioactive scaffold design may prove to be expansive.

5.
Metabolites ; 12(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36557287

RESUMEN

Bioavailability and chemical stability are important characteristics of drug products that are strongly affected by the solid-state structure of the active pharmaceutical ingredient (API). In pharmaceutical development and quality control activities, solid-state NMR (ssNMR) has proved to be an excellent tool for the detection and accurate quantification of undesired solid-state forms. To obtain correct quantitative outcomes, the resulting spectrum of an analytical sample should be deconvoluted into the individual spectra of the pure components. However, the ssNMR deconvolution is particularly challenging due to the following: the relatively large line widths that may lead to severe peak overlap, multiple spinning sidebands as a result of applying Magic Angle Spinning (MAS), and highly irregular peak shapes commonly observed in mixture spectra. To address these challenges, we created a tailored and automated deconvolution approach of ssNMR mixture spectra that involves a linear combination modelling (LCM) of previously acquired reference spectra of pure solid-state components. For optimal model performance, the template and mixture spectra should be acquired under the same conditions and experimental settings. In addition to the parameters controlling the contributions of the components in the mixture, the proposed model includes terms for spectral processing such as phase correction and horizontal shifting that are all jointly estimated via a non-linear, constrained optimisation algorithm. Finally, our novel procedure has been implemented in a fully functional and user-friendly R Shiny webtool (hence no local R installation required) that offers interactive data visualisations, manual adjustments to the automated deconvolution results, and the traceability and reproducibility of analyses.

6.
Nat Commun ; 10(1): 3365, 2019 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358747

RESUMEN

Recent demonstrations of inverted thermal activation of charge mobility in polymer field-effect transistors have excited the interest in transport regimes not limited by thermal barriers. However, rationalization of the limiting factors to access such regimes is still lacking. An improved understanding in this area is critical for development of new materials, establishing processing guidelines, and broadening of the range of applications. Here we show that precise processing of a diketopyrrolopyrrole-tetrafluorobenzene-based electron transporting copolymer results in single crystal-like and voltage-independent mobility with vanishing activation energy above 280 K. Key factors are uniaxial chain alignment and thermal annealing at temperatures within the melting endotherm of films. Experimental and computational evidences converge toward a picture of electrons being delocalized within crystalline domains of increased size. Residual energy barriers introduced by disordered regions are bypassed in the direction of molecular alignment by a more efficient interconnection of the ordered domains following the annealing process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA