Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36614071

RESUMEN

Predicting the ability of nanoparticles (NP) to access the tumor is key to the success of chemotherapy using nanotherapeutics. In the present study, the ability of the dual NP-based theranostic system to accumulate in the tumor was evaluated in vivo using intravital microscopy (IVM) and MRI. The system consisted of model therapeutic doxorubicin-loaded poly(lactide-co-glycolide) NP (Dox-PLGA NP) and novel hybrid Ce3/4+-doped maghemite NP encapsulated within the HSA matrix (hMNP) as a supermagnetic MRI contrasting agent. Both NP types had similar sizes of ~100 nm and negative surface potentials. The level of the hMNP and PLGA NP co-distribution in the same regions of interest (ROI, ~2500 µm2) was assessed by IVM in mice bearing the 4T1-mScarlet murine mammary carcinoma at different intervals between the NP injections. In all cases, both NP types penetrated into the same tumoral/peritumoral regions by neutrophil-assisted extravasation through vascular micro- and macroleakages. The maximum tumor contrasting in MRI scans was obtained 5 h after hMNP injection/1 h after PLGA NP injection; the co-distribution level at this time reached 78%. Together with high contrasting properties of the hMNP, these data indicate that the hMNP and PLGA NPs are suitable theranostic companions. Thus, analysis of the co-distribution level appears to be a useful tool for evaluation of the dual nanoparticle theranostics, whereas assessment of the leakage areas helps to reveal the tumors potentially responsive to nanotherapeutics.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Ratones , Animales , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica Humana , Doxorrubicina , Neoplasias/terapia , Portadores de Fármacos , Línea Celular Tumoral
2.
J Microencapsul ; 37(3): 283-295, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32079451

RESUMEN

Aims: To evaluate the influence of minor differences in molecular weights of commercially available low molecular weight PLGA grades on the kinetics of doxorubicin release from the nanoparticles.Methods: Three low-molecular weight 50/50 PLGA polymers were thoroughly characterised concerning intrinsic viscosity, molecular weight (Mw), acid value, and residual monomer content. The doxorubicin-loaded nanoparticles prepared using these polymers were evaluated concerning the kinetics of drug release and hydrolytic degradation.Results: The Mw of the polymers were slightly different: 10.2, 10.3, and 4.7 kDa. The nanoparticles obtained from the polymer with Mw of 4.7 kDa exhibited considerably higher rates of drug release and polymer degradation.Conclusion: In the case of low molecular weight PLGA grades even a few kilodaltons could be important for the batch-to-batch reproducibility of the nanoformulation parameters. These results bring forward the importance of in-house characterisation of the polymers to be used for the nanoparticle preparation.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacocinética , Doxorrubicina/química , Doxorrubicina/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Cinética
3.
Eur J Pharm Sci ; 164: 105905, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116175

RESUMEN

During the drug development process, many pharmacologically active compounds are discarded because of poor water solubility, but nanoparticle-based formulations are increasingly proposed as a solution for this problem. We therefore studied the distribution of nanoparticulate carriers and the delivery of their poorly water-soluble cargo to a structure of the central nervous system, the retina, under naive and pathological conditions. The lipophilic fluorescent dye coumarin 6 (Cou6) was encapsulated into poly(lactic-co-glycolic acid) PLGA nanoparticles (NPs). After intravenous administration in rats, we analyzed the distribution of cargo Cou6 and of the NP carrier covalently labeled with Cy5.5 in healthy animals and animals with optic nerve crush (ONC). In vivo real-time retina imaging revealed that Cou6 was rapidly released from PLGA NPs and penetrated the inner blood-retina barrier (BRB) within 15 min and PLGA NPs were gradually eliminated from the retinal blood circulation. Ex vivo microscopy of retinal flat mounts indicated that the Cou6 accumulated predominantly in the extracellular space and to a lesser extent in neurons. While the distribution of Cou6 in healthy animals and post ONC was comparable at early time point post-operation, the elimination of the NPs from the vessels was faster on day 7 post ONC. These results demonstrate the importance of considering different kinetics of nano-carrier and poorly water-soluble cargo, emphasizing the critical role of their parenchymal distribution, i.e. cellular/extracellular, and function of different physiological and pathological conditions.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Animales , Portadores de Fármacos , Sistemas de Liberación de Medicamentos , Ácido Láctico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas , Retina , Agua
4.
Pharmaceutics ; 13(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452106

RESUMEN

Fluorescently labeled nanoparticles are widely used for evaluating their distribution in the biological environment. However, dye leakage can lead to misinterpretations of the nanoparticles' biodistribution. To better understand the interactions of dyes and nanoparticles and their biological environment, we explored PLGA nanoparticles labeled with four widely used dyes encapsulated (coumarin 6, rhodamine 123, DiI) or bound covalently to the polymer (Cy5.5.). The DiI label was stable in both aqueous and lipophilic environments, whereas the quick release of coumarin 6 was observed in model media containing albumin (42%) or liposomes (62%), which could be explained by the different affinity of these dyes to the polymer and lipophilic structures and which we also confirmed by computational modeling (log PDPPC/PLGA: DiI-2.3, Cou6-0.7). The importance of these factors was demonstrated by in vivo neuroimaging (ICON) of the rat retina using double-labeled Cy5.5/Cou6-nanoparticles: encapsulated Cou6 quickly leaked into the tissue, whereas the stably bound Cy.5.5 label remained associated with the vessels. This observation is a good example of the possible misinterpretation of imaging results because the coumarin 6 distribution creates the impression that nanoparticles effectively crossed the blood-retina barrier, whereas in fact no signal from the core material was found beyond the blood vessels.

5.
Eur J Pharm Biopharm ; 150: 131-142, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32151727

RESUMEN

PLGA (poly(lactic-co-glycolic acid))-based nanoparticles (NPs) are promising drug carrier systems because of their excellent biocompatibility and ability for sustained drug release. However, it is not well understood how the kinetics of such drug delivery system perform in the retinal blood circulation as imaged in vivo and in real time. To answer this question, PLGA NPs were loaded either with lipophilic carbocyanine perchlorate (DiI) or hydrophilic Rhodamine 123 (Rho123) and coated with poloxamer 188 (P188): PLGA-DiI/P188 and PLGA-Rho123/P188. All particles had narrow size distributions around 130 nm, spherical shape and negative potential. Subsequently, we performed in vivo real-time imaging of retinal blood vessels, combined with ex vivo microscopy to monitor the kinetics and to detect location of those two fluorescent markers. We found that DiI signals were long lasting, detectable >90 min in blood vessels after intravenous injection as visible by homogeneous labelling of the vessel wall as well as by spots in the lumen of blood vessels. In contrast, Rho123 signals mostly disappeared after 15 min post intravenous injection in such compartment. To explore how PLGA NP-loaded cargoes are released in the retina in vivo, we thereafter monitored the Cyanine5.5 amine (Cy5.5) covalently linked PLGA polymer (Cy5.5-PLGA) in parallel to DiI and Rho123. The Cy5.5 signal from PLGA polymer was detectable in the retina vessels >90 min for both, the Cy5.5-PLGA-DiI/P188 and Cy5.5-PLGA-Rho123/P188 groups. Microscopy of the ex vivo retina tissue revealed partial level of colocalization of PLGA with DiI but no colocalization between PLGA and Rho123 at 2 h post injection. This indicates that at least a fraction of the lipophilic DiI was preserved within NPs, whereas no hydrophilic Rho123 was associated with NPs at that time point. In conclusion, the properties of PLGA carrier-cargo system in the blood circulation of the retina might be strongly influenced by the combination of factors, including the individual properties of loaded compounds and blood milieu. Thus, it is unlikely that a single nanoparticle formulation will be identified that is universally effective for the delivery of different compounds.


Asunto(s)
Carbocianinas/metabolismo , Portadores de Fármacos , Colorantes Fluorescentes/metabolismo , Microscopía Confocal , Microscopía Fluorescente , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vasos Retinianos/metabolismo , Rodamina 123/metabolismo , Animales , Carbocianinas/química , Composición de Medicamentos , Colorantes Fluorescentes/química , Cinética , Masculino , Poloxámero/química , Ratas , Flujo Sanguíneo Regional , Rodamina 123/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA