Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nature ; 583(7814): E14, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32533095

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nature ; 582(7812): 395-398, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494010

RESUMEN

Neuroprotectant strategies that have worked in rodent models of stroke have failed to provide protection in clinical trials. Here we show that the opposite circadian cycles in nocturnal rodents versus diurnal humans1,2 may contribute to this failure in translation. We tested three independent neuroprotective approaches-normobaric hyperoxia, the free radical scavenger α-phenyl-butyl-tert-nitrone (αPBN), and the N-methyl-D-aspartic acid (NMDA) antagonist MK801-in mouse and rat models of focal cerebral ischaemia. All three treatments reduced infarction in day-time (inactive phase) rodent models of stroke, but not in night-time (active phase) rodent models of stroke, which match the phase (active, day-time) during which most strokes occur in clinical trials. Laser-speckle imaging showed that the penumbra of cerebral ischaemia was narrower in the active-phase mouse model than in the inactive-phase model. The smaller penumbra was associated with a lower density of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive dying cells and reduced infarct growth from 12 to 72 h. When we induced circadian-like cycles in primary mouse neurons, deprivation of oxygen and glucose triggered a smaller release of glutamate and reactive oxygen species, as well as lower activation of apoptotic and necroptotic mediators, in 'active-phase' than in 'inactive-phase' rodent neurons. αPBN and MK801 reduced neuronal death only in 'inactive-phase' neurons. These findings suggest that the influence of circadian rhythm on neuroprotection must be considered for translational studies in stroke and central nervous system diseases.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/fisiología , Modelos Animales de Enfermedad , Neuronas/patología , Neuroprotección , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control , Animales , Isquemia Encefálica/patología , Isquemia Encefálica/fisiopatología , Isquemia Encefálica/prevención & control , Glucosa/deficiencia , Humanos , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Oxígeno , Ratas , Ratas Sprague-Dawley , Reproducibilidad de los Resultados , Accidente Cerebrovascular/fisiopatología , Investigación Biomédica Traslacional , Insuficiencia del Tratamiento
3.
Opt Express ; 24(9): 9251-65, 2016 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-27137541

RESUMEN

We present a high-speed and phase-sensitive reflectance line-scanning confocal holographic microscope (LCHM). We achieved rapid confocal imaging using a fast line-scan CCD camera and quantitative phase imaging using off-axis digital holography (DH) on a 1D, line-by-line basis in our prototype experiment. Using a 20 kHz line scan rate, we achieved a frame rate of 20 Hz for 512x512 pixels en-face confocal images. We realized coherent holographic detection two different ways. We first present a LCHM using off-axis configuration. By using a microscope objective of a NA 0.65, we achieved axial and lateral resolution of ~3.5 micrometers and ~0.8 micrometers, respectively. We demonstrated surface profile measurement of a phase target at nanometer precision and the digital refocusing of a defocused confocal en-face image. Ultrahigh temporal resolution M mode is demonstrated by measuring the vibration of a PZT-actuated mirror driven by a sine wave at 1 kHz. We then report our experimental work on a LCHM using an in-line configuration. In this in-line LCHM, the coherent detection is enabled by moving the reference arm at a constant speed, thereby introducing a Doppler frequency shift that leads to spatial interference fringes along the scanning direction. Lastly, we present a unified formulation that treats off-axis and in-line LCHM in a unified joint spatiotemporal modulation framework and provide a connection between LCHM and the traditional off-axis DH. The presented high-speed LCHM may find applications in optical metrology and biomedical imaging.

4.
J Cereb Blood Flow Metab ; 42(3): 510-525, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-32515672

RESUMEN

The cerebral cortex has a number of conserved morphological and functional characteristics across brain regions and species. Among them, the laminar differences in microvascular density and mitochondrial cytochrome c oxidase staining suggest potential laminar variability in the baseline O2 metabolism and/or laminar variability in both O2 demand and hemodynamic response. Here, we investigate the laminar profile of stimulus-induced intravascular partial pressure of O2 (pO2) transients to stimulus-induced neuronal activation in fully awake mice using two-photon phosphorescence lifetime microscopy. Our results demonstrate that stimulus-induced changes in intravascular pO2 are conserved across cortical layers I-IV, suggesting a tightly controlled neurovascular response to provide adequate O2 supply across cortical depth. In addition, we observed a larger change in venular O2 saturation (ΔsO2) compared to arterioles, a gradual increase in venular ΔsO2 response towards the cortical surface, and absence of the intravascular "initial dip" previously reported under anesthesia. This study paves the way for quantification of layer-specific cerebral O2 metabolic responses, facilitating investigation of brain energetics in health and disease and informed interpretation of laminar blood oxygen level dependent functional magnetic resonance imaging signals.


Asunto(s)
Corteza Cerebral/irrigación sanguínea , Circulación Cerebrovascular/fisiología , Acoplamiento Neurovascular/fisiología , Imagen Óptica/métodos , Oxígeno/sangre , Animales , Femenino , Hemodinámica/fisiología , Ratones , Ratones Endogámicos C57BL , Microscopía , Vigilia
5.
IEEE J Sel Top Quantum Electron ; 18(3): 1059-1072, 2011 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-24478572

RESUMEN

Lensfree on-chip holographic microscopy is an emerging technique that offers imaging of biological specimens over a large field-of-view without using any lenses or bulky optical components. Lending itself to a compact, cost-effective and mechanically robust architecture, lensfree on-chip holographic microscopy can offer an alternative toolset addressing some of the emerging needs of microscopic analysis and diagnostics in low-resource settings, especially for telemedicine applications. In this review, we summarize the latest achievements in lensfree optical microscopy based on partially coherent on-chip holography, including portable telemedicine microscopy, cell-phone based microscopy and field-portable optical tomographic microscopy. We also discuss some of the future directions for telemedicine microscopy and its prospects to help combat various global health challenges.

6.
Analyst ; 136(17): 3512-8, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21283900

RESUMEN

We demonstrate lensless fluorescent microscopy over a large field-of-view of ~60 mm(2) with a spatial resolution of <4 µm. In this on-chip fluorescent imaging modality, the samples are placed on a fiber-optic faceplate that is tapered such that the density of the fiber-optic waveguides on the top facet is >5 fold larger than the bottom one. Placed on this tapered faceplate, the fluorescent samples are pumped from the side through a glass hemisphere interface. After excitation of the samples, the pump light is rejected through total internal reflection that occurs at the bottom facet of the sample substrate. The fluorescent emission from the sample is then collected by the smaller end of the tapered faceplate and is delivered to an opto-electronic sensor-array to be digitally sampled. Using a compressive sampling algorithm, we decode these raw lensfree images to validate the resolution (<4 µm) of this on-chip fluorescent imaging platform using microparticles as well as labeled Giardia muris cysts. This wide-field lensfree fluorescent microscopy platform, being compact and high-throughput, might provide a valuable tool especially for cytometry, rare cell analysis (involving large area microfluidic systems) as well as for microarray imaging applications.


Asunto(s)
Tecnología de Fibra Óptica/instrumentación , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente/instrumentación , Giardia/ultraestructura , Lentes
7.
Biomed Opt Express ; 12(7): 4192-4206, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34457408

RESUMEN

Time-domain measurements for fluorescence lifetime imaging microscopy (FLIM) and phosphorescence lifetime imaging microscopy (PLIM) are conventionally computed by nonlinear curve fitting techniques to model the time-resolved profiles as mono- or multi-exponential decays. However, these techniques are computationally intensive and prone to fitting errors. The phasor or "polar plot" analysis method has recently gained attention as a simple method to characterize fluorescence lifetime. Here, we adapted the phasor analysis method for absolute quantitation of phosphorescence lifetimes of oxygen-sensitive phosphors and used the phasor-derived lifetime values to quantify oxygen partial pressure (pO2) in cortical microvessels of awake mice. Our results, both experimental and simulated, demonstrate that oxygen measurements obtained from computationally simpler phasor analysis agree well with traditional curve fitting calculations. To our knowledge, the current study constitutes the first application of the technique for characterizing microsecond-length, time-domain phosphorescence measurements and absolute, in vivo quantitation of a vital physiological parameter. The method shows promise for monitoring cerebral metabolism and pathological changes in preclinical rodent models.

8.
Artículo en Inglés | MEDLINE | ID: mdl-33959688

RESUMEN

Recent developments in optical microscopy, applicable for large-scale and longitudinal imaging of cortical activity in behaving animals, open unprecedented opportunities to gain a deeper understanding of neurovascular and neurometabolic coupling during different brain states. Future studies will leverage these tools to deliver foundational knowledge about brain state-dependent regulation of cerebral blood flow and metabolism as well as regulation as a function of brain maturation and aging. This knowledge is of critical importance to interpret hemodynamic signals observed with functional magnetic resonance imaging (fMRI).

9.
Lab Chip ; 10(14): 1787-92, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20445943

RESUMEN

We demonstrate lensfree digital microscopy on a cellphone. This compact and light-weight holographic microscope installed on a cellphone does not utilize any lenses, lasers or other bulky optical components and it may offer a cost-effective tool for telemedicine applications to address various global health challenges. Weighing approximately 38 grams (<1.4 ounces), this lensfree imaging platform can be mechanically attached to the camera unit of a cellphone where the samples are loaded from the side, and are vertically illuminated by a simple light-emitting diode (LED). This incoherent LED light is then scattered from each micro-object to coherently interfere with the background light, creating the lensfree hologram of each object on the detector array of the cellphone. These holographic signatures captured by the cellphone permit reconstruction of microscopic images of the objects through rapid digital processing. We report the performance of this lensfree cellphone microscope by imaging various sized micro-particles, as well as red blood cells, white blood cells, platelets and a waterborne parasite (Giardia lamblia).


Asunto(s)
Teléfono Celular , Holografía/instrumentación , Aumento de la Imagen/instrumentación , Iluminación/instrumentación , Microscopía/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Lentes , Semiconductores
10.
Lab Chip ; 10(9): 1109-12, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20390127

RESUMEN

We demonstrate color and monochrome on-chip imaging of Caenorhabditis elegans samples over a wide field-of-view using incoherent lensless in-line holography. Digital reconstruction of the recorded lensless holograms rapidly creates the C. elegans images within <1 s over a field-of-view of >24 mm2. By digitally combining the reconstructed images at three different wavelengths (red, green and blue), color images of dyed samples are also acquired. This wide field-of-view and compact on-chip imaging modality also permits straightforward integration with microfluidic systems.


Asunto(s)
Caenorhabditis elegans/citología , Colorimetría/instrumentación , Holografía/instrumentación , Aumento de la Imagen/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Lentes , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
11.
Lab Chip ; 10(11): 1417-28, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20401422

RESUMEN

Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still require complex and costly set-ups that unfortunately limit their use beyond well equipped laboratories. In the meantime, microscopy in resource-limited settings has requirements significantly different from those encountered in advanced laboratories, and such imaging devices should be cost-effective, compact, light-weight and appropriately accurate and simple to be usable by minimally trained personnel. Furthermore, these portable microscopes should ideally be digitally integrated as part of a telemedicine network that connects various mobile health-care providers to a central laboratory or hospital. Toward this end, here we demonstrate a lensless on-chip microscope weighing approximately 46 grams with dimensions smaller than 4.2 cm x 4.2 cm x 5.8 cm that achieves sub-cellular resolution over a large field of view of approximately 24 mm(2). This compact and light-weight microscope is based on digital in-line holography and does not need any lenses, bulky optical/mechanical components or coherent sources such as lasers. Instead, it utilizes a simple light-emitting-diode (LED) and a compact opto-electronic sensor-array to record lensless holograms of the objects, which then permits rapid digital reconstruction of regular transmission or differential interference contrast (DIC) images of the objects. Because this lensless incoherent holographic microscope has orders-of-magnitude improved light collection efficiency and is very robust to mechanical misalignments it may offer a cost-effective tool especially for telemedicine applications involving various global health problems in resource limited settings.


Asunto(s)
Holografía/instrumentación , Lentes , Iluminación/instrumentación , Microfluídica/instrumentación , Microscopía/instrumentación , Telemedicina/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Miniaturización
12.
Anal Chem ; 82(11): 4621-7, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20450181

RESUMEN

We present a detailed investigation of the performance of lens-free holographic microscopy toward high-throughput on-chip blood analysis. Using a spatially incoherent source that is emanating from a large aperture, automated counting of red blood cells with minimal sample preparation steps at densities reaching up to approximately 0.4 x 10(6) cells/muL is presented. Using the same lens-free holographic microscopy platform, we also characterize the volume of the red blood cells at the single-cell level through recovery of the optical phase information of each cell. We further demonstrate the measurement of the hemoglobin concentration of whole blood samples as well as automated counting of white blood cells, also yielding spatial resolution at the subcellular level sufficient to differentiate granulocytes, monocytes, and lymphocytes from each other. These results uncover the prospects of lens-free holographic on-chip imaging to provide a useful tool for global health problems, especially by facilitating whole blood analysis in resource-poor environments.


Asunto(s)
Recuento de Células Sanguíneas/instrumentación , Dispositivos Laboratorio en un Chip , Recuento de Células Sanguíneas/métodos , Recuento de Eritrocitos , Holografía , Humanos , Lentes , Recuento de Leucocitos , Microscopía , Factores de Tiempo
13.
Opt Express ; 18(10): 10510-23, 2010 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-20588904

RESUMEN

We demonstrate the use of a compressive sampling algorithm for on-chip fluorescent imaging of sparse objects over an ultra-large field-of-view (>8 cm(2)) without the need for any lenses or mechanical scanning. In this lensfree imaging technique, fluorescent samples placed on a chip are excited through a prism interface, where the pump light is filtered out by total internal reflection after exciting the entire sample volume. The emitted fluorescent light from the specimen is collected through an on-chip fiber-optic faceplate and is delivered to a wide field-of-view opto-electronic sensor array for lensless recording of fluorescent spots corresponding to the samples. A compressive sampling based optimization algorithm is then used to rapidly reconstruct the sparse distribution of fluorescent sources to achieve approximately 10 microm spatial resolution over the entire active region of the sensor-array, i.e., over an imaging field-of-view of >8 cm(2). Such a wide-field lensless fluorescent imaging platform could especially be significant for high-throughput imaging cytometry, rare cell analysis, as well as for micro-array research.


Asunto(s)
Algoritmos , Compresión de Datos/métodos , Aumento de la Imagen/instrumentación , Interpretación de Imagen Asistida por Computador/instrumentación , Iluminación/instrumentación , Microscopía Fluorescente/instrumentación , Manejo de Especímenes/instrumentación , Aumento de la Imagen/métodos , Lentes
14.
Nanoscale ; 12(4): 2657-2672, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31939953

RESUMEN

Lanthanide-based upconverting nanoparticles (UCNPs) are known for their remarkable ability to convert near-infrared energy into higher energy light, offering an attractive platform for construction of biological imaging probes. Here we focus on in vivo high-resolution microscopy - an application for which the opportunity to carry out excitation at low photon fluxes in non-linear regime makes UCNPs stand out among all multiphoton probes. To create biocompatible nanoparticles we employed Janus-type dendrimers as surface ligands, featuring multiple carboxylates on one 'face' of the molecule, polyethylene glycol (PEG) residues on another and Eriochrome Cyanine R dye as the core. The UCNP/Janus-dendrimers showed outstanding performance as vascular markers, allowing for depth-resolved mapping of individual capillaries in the mouse brain down to a remarkable depth of ∼1000 µm under continuous wave (CW) excitation with powers not exceeding 20 mW. Using a posteriori deconvolution, high-resolution images could be obtained even at high scanning speeds in spite of the blurring caused by the long luminescence lifetimes of the lanthanide ions. Secondly, the new UCNP/dendrimers allowed us to evaluate the feasibility of quantitative analyte imaging in vivo using a popular ratiometric UCNP-to-ligand excitation energy transfer (EET) scheme. Our results show that the ratio of UCNP emission bands, which for quantitative sensing should respond selectively to the analyte of interest, is also strongly affected by optical heterogeneities of the medium. On the other hand, the luminescence decay times of UCNPs, which are independent of the medium properties, are modulated via EET only insignificantly. As such, quantitative analyte sensing in biological tissues with UCNP-based probes still remains a challenge.


Asunto(s)
Encéfalo/irrigación sanguínea , Circulación Cerebrovascular , Dendrímeros/química , Elementos de la Serie de los Lantanoides/química , Nanopartículas/química , Animales , Transferencia de Energía , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Ligandos , Ratones , Microscopía/métodos , Fotones , Polietilenglicoles/química , Solubilidad
15.
J Cereb Blood Flow Metab ; 39(12): 2379-2391, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31423931

RESUMEN

Recent works highlight the therapeutic potential of targeting cyclic guanosine monophosphate (cGMP)-dependent pathways in the context of brain ischemia/reperfusion injury (IRI). Although cGMP-dependent protein kinase I (cGKI) has emerged as a key mediator of the protective effects of nitric oxide (NO) and cGMP, the mechanisms by which cGKI attenuates IRI remain poorly understood. We used a novel, conditional cGKI knockout mouse model to study its role in cerebral IRI. We assessed neurological deficit, infarct volume, and cerebral perfusion in tamoxifen-inducible vascular smooth muscle cell-specific cGKI knockout mice and control animals. Stroke experiments revealed greater cerebral infarct volume in smooth muscle cell specific cGKI knockout mice (males: 96 ± 16 mm3; females: 93 ± 12 mm3, mean±SD) than in all control groups: wild type (males: 66 ± 19; females: 64 ± 14), cGKI control (males: 65 ± 18; females: 62 ± 14), cGKI control with tamoxifen (males: 70 ± 8; females: 68 ± 10). Our results identify, for the first time, a protective role of cGKI in vascular smooth muscle cells during ischemic stroke injury. Moreover, this protective effect of cGKI was found to be independent of gender and was mediated via improved reperfusion. These results suggest that cGKI in vascular smooth muscle cells should be targeted by therapies designed to protect brain tissue against ischemic stroke.


Asunto(s)
Infarto Cerebral/enzimología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Daño por Reperfusión/enzimología , Accidente Cerebrovascular/enzimología , Animales , Infarto Cerebral/genética , Infarto Cerebral/patología , Proteína Quinasa Dependiente de GMP Cíclico Tipo I/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Daño por Reperfusión/genética , Daño por Reperfusión/patología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
16.
Elife ; 82019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31305237

RESUMEN

Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.


Asunto(s)
Capilares/fisiología , Corteza Cerebral/fisiología , Circulación Cerebrovascular , Oxígeno/metabolismo , Animales , Ratones , Presión Parcial
17.
J Biomed Opt ; 23(12): 1-9, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30516039

RESUMEN

Impaired oxygen delivery and/or consumption in the retinal tissue underlies the pathophysiology of many retinal diseases. However, the essential tools for measuring oxygen concentration in retinal capillaries and studying oxygen transport to retinal tissue are still lacking. We show that two-photon phosphorescence lifetime microscopy can be used to map absolute partial pressures of oxygen (pO2) in the retinal capillary plexus. Measurements were performed at various retinal depths in anesthetized mice under systemic normoxic and hyperoxic conditions. We used a newly developed two-photon phosphorescent oxygen probe, based on a two-photon absorbing platinum tetraphthalimidoporphyrin, and commercially available optics without correction for optical aberrations of the eye. The transverse and axial distances within the tissue volume were calibrated using a model of the eye's optical system. We believe this is the first demonstration of in vivo depth-resolved imaging of pO2 in retinal capillaries. Application of this method has the potential to advance our understanding of oxygen delivery on the microvascular scale and help elucidate mechanisms underlying various retinal diseases.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Oxígeno , Vasos Retinianos , Animales , Femenino , Procesamiento de Imagen Asistido por Computador , Ratones , Ratones Endogámicos C57BL , Oxígeno/sangre , Oxígeno/metabolismo , Presión Parcial , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/metabolismo
18.
Biomed Opt Express ; 7(11): 4674-4684, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27896006

RESUMEN

We developed ultra-high-speed, phase-sensitive, full-field reflection interferometric confocal microscopy (FFICM) for the quantitative characterization of in vivo microscale biological motions and flows. We demonstrated 2D frame rates in excess of 1 kHz and pixel throughput rates up to 125 MHz. These fast FFICM frame rates were enabled by the use of a low spatial coherence, high-power laser source. Specifically, we used a dense vertical cavity surface emitting laser (VCSEL) array that synthesized low spatial coherence light through a large number of narrowband, mutually-incoherent emitters. Off-axis interferometry enabled single-shot acquisition of the complex-valued interferometric signal. We characterized the system performance (~2 µm lateral resolution, ~8 µm axial gating depth) with a well-known target. We also demonstrated the use of this highly parallelized confocal microscopy platform for visualization and quantification of cilia-driven surface flows and cilia beat frequency in an important animal model (Xenopus embryos) with >1 kHz frame rate. Such frame rates are needed to see large changes in local flow velocity over small distance (high shear flow), in this case, local flow around a single ciliated cell. More generally, our results are an important demonstration of low-spatial coherence, high-power lasers in high-performance, quantitative biomedical imaging.

19.
Sci Rep ; 4: 3760, 2014 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-24441627

RESUMEN

Lensfree on-chip imaging and sensing platforms provide compact and cost-effective designs for various telemedicine and lab-on-a-chip applications. In this work, we demonstrate computational solutions for some of the challenges associated with (i) the use of broadband, partially-coherent illumination sources for on-chip holographic imaging, and (ii) multicolor detection for lensfree fluorescent on-chip microscopy. Specifically, we introduce spectral demultiplexing approaches that aim to digitally narrow the spectral content of broadband illumination sources (such as wide-band light emitting diodes or even sunlight) to improve spatial resolution in holographic on-chip microscopy. We also demonstrate the application of such spectral demultiplexing approaches for wide-field imaging of multicolor fluorescent objects on a chip. These computational approaches can be used to replace e.g., thin-film interference filters, gratings or other optical components used for spectral multiplexing/demultiplexing, which can form a desirable solution for cost-effective and compact wide-field microscopy and sensing needs on a chip.


Asunto(s)
Diagnóstico por Imagen , Holografía , Microscopía Fluorescente , Humanos , Dispositivos Laboratorio en un Chip , Luz Solar , Telemedicina
20.
Lab Chip ; 13(7): 1282-8, 2013 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-23392286

RESUMEN

We demonstrate a compact and cost-effective imaging cytometry platform installed on a cell-phone for the measurement of the density of red and white blood cells as well as hemoglobin concentration in human blood samples. Fluorescent and bright-field images of blood samples are captured using separate optical attachments to the cell-phone and are rapidly processed through a custom-developed smart application running on the phone for counting of blood cells and determining hemoglobin density. We evaluated the performance of this cell-phone based blood analysis platform using anonymous human blood samples and achieved comparable results to a standard bench-top hematology analyser. Test results can either be stored on the cell-phone memory or be transmitted to a central server, providing remote diagnosis opportunities even in field settings.


Asunto(s)
Recuento de Células Sanguíneas/economía , Recuento de Células Sanguíneas/instrumentación , Análisis Químico de la Sangre/economía , Análisis Químico de la Sangre/instrumentación , Teléfono Celular , Recuento de Células , Análisis Costo-Beneficio , Recuento de Eritrocitos , Hemoglobinas/análisis , Humanos , Recuento de Leucocitos , Sistemas de Atención de Punto , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA