RESUMEN
Pseudomonas aeruginosa is a medically important opportunistic pathogen due to its intrinsic ability to form biofilms on different surfaces as one of the defense mechanisms for survival. The fact that it can form biofilms on various medical implants makes it more harmful clinically. Although various antibiotics are used to treat Pseudomonas aeruginosa infections, studies have shown that sub-MIC levels of antibiotics could induce Pseudomonas biofilm formation. The present study thus explored the effect of the aminoglycoside antibiotic gentamicin on the biofilm dynamics of two Pseudomonas aeruginosa strains KPW.1-S1 and HRW.1-S3. Biofilm formation was found to be increased in the presence of increased concentrations of gentamicin. Confocal, scanning electron microscopy, and other biochemical tests deduced that biofilm-forming components exoproteins, eDNA, and exolipids as exopolymeric substances in Pseudomonas aeruginosa biofilms were increased in the presence of gentamicin. An increase in reactive oxygen species generation along with increased cell surface hydrophobicity was also seen for both strains when treated with gentamicin. The observed increase in the adherence of the cells accompanied by the increase in the components of exopolymeric substances may have largely contributed to the increased biofilm production by the Pseudomonas aeruginosa strains under the stress of the antibiotic treatment.
Asunto(s)
Antibacterianos , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Especies Reactivas de Oxígeno , Biopelículas , Gentamicinas/farmacologíaRESUMEN
The present study characterized aresenate reductase of Bacillus thuringiensis KPWP1, tolerant to salt, arsenate and a wide range of pH during growth. Interestingly, it was found that arsC, arsB and arsR genes involved in arsenate tolerance are distributed in the genome of strain KPWP1. The inducible arsC gene was cloned, expressed and the purified ArsC protein showed profound enzyme activity with the KM and Kcat values as 25 µM and 0.00119 s-1, respectively. In silico studies revealed that in spite of 19-26% differences in gene sequences, the ArsC proteins of Bacillus thuringiensis, Bacillus subtilis and Bacillus cereus are structurally conserved and ArsC structure of strain KPWP1 is close to nature. Docking and analysis of the binding site showed that arsenate ion interacts with three cysteine residues of ArsC and predicts that the ArsC from B. thuringiensis KPWP1 reduces arsenate by using the triple Cys redox relay mechanism.
Asunto(s)
Arseniato Reductasas , Bacillus thuringiensis , Arseniato Reductasas/genética , Arseniatos , Arsénico , Bacillus cereus , Bacillus subtilis , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/genética , Proteínas Bacterianas/genética , Concentración de Iones de Hidrógeno , Tolerancia a la SalRESUMEN
Bacillus thuringiensis is an agriculturally and medically important bacteria as it produces insecticidal Cry proteins and can form biofilm on different plant surfaces. Previous studies reported that the ubiquitous carbon source glucose could induce restricted motility and fractal pattern formation in the growing colonies of pH, salt and arsenate tolerant Bacillus thuringiensis KPWP1. As bacteria are evolved with the ability to exhibit multicellular behavior and biofilm formation under limiting conditions for survival, the present study was focused on exploring the effect of glucose in biofilm formation by Bacillus thuringiensis KPWP1. A significant rise in biofilm loads was observed with increased glucose concentrations in growth media. Compared to control, six times more biofilm load was marked in presence of 2% of glucose. Interestingly, it was observed that the effect was glucose specific and also not due to any change in the sugar-induced physicochemical property of the growth media as the addition of galactose or arabinose could not induce any significant increase in KPWP1 biofilm load. Scanning electron-, confocal laser scanning-microscopic studies and biochemical tests revealed that increased concentrations of glucose could induce increased production of exopolymeric substances, increased number of densely-packed micro-colonies in KPWP1 biofilm and increased hydrophobicity and adherence properties in KPWP1cells.
Asunto(s)
Bacillus thuringiensis , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Glucosa , Interacciones Hidrofóbicas e HidrofílicasRESUMEN
Pseudomonas sp. has long been known for production of a wide range of secondary metabolites during late exponential and stationary phases of growth. Phenazine derivatives constitute a large group of secondary metabolites produced by microorganisms including Pseudomonas sp. Phenazine 1,6-di-carboxylic acid (PDC) is one of such metabolites and has been debated for its origin from Pseudomonas sp. The present study describes purification and characterization of PDC isolated from culture of a natural isolate of Pseudomonas sp. HRW.1-S3 while grown in presence of crude oil as sole carbon source. The isolated PDC was tested for its effect on biofilm formation by another environmental isolate of Pseudomonas sp. DSW.1-S4 which lacks the ability to produce any phenazine compound. PDC showed profound effect on both planktonic as well as biofilm mode of growth of DSW.1-S4 at concentrations between 5 and 20 µM. Interestingly, PDC showed substantial cytotoxicity against three cancer cell lines and against both Gram-positive and Gram-negative bacteria. Thus, the present study not only opens an avenue to understand interspecific cooperation between Pseudomonas species which may lead its applicability in bioremediation, but also it signifies the scope of future investigation on PDC for its therapeutic applications.
Asunto(s)
Antibacterianos/aislamiento & purificación , Antineoplásicos/aislamiento & purificación , Biopelículas/efectos de los fármacos , Petróleo/metabolismo , Fenazinas/aislamiento & purificación , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/metabolismo , Antineoplásicos/metabolismo , Biopelículas/crecimiento & desarrollo , Biotransformación , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Fenazinas/metabolismo , Pseudomonas aeruginosa/fisiologíaRESUMEN
Multiresolution analysis on the spatial refractive index inhomogeneities in the epithelium and connective tissue regions of a human cervix reveals a clear signature of multifractality. Importantly, the derived multifractal parameters, namely, the generalized Hurst exponent and the width of the singularity spectrum, derived via multifractal detrended fluctuation analysis, shows interesting differences between tissues having different grades of precancers. The refractive-index fluctuations are found to be more anticorrelated, and the strength of multifractality is observed to be considerably stronger in the higher grades of precancers. These observations on the multifractal nature of tissue refractive-index variations may prove to be valuable for developing light-scattering approaches for noninvasive diagnosis of precancer and early-stage cancer.
Asunto(s)
Detección Precoz del Cáncer/métodos , Neoplasias/diagnóstico , Lesiones Precancerosas/diagnóstico , Refractometría , Algoritmos , Cuello del Útero/patología , Detección Precoz del Cáncer/instrumentación , Femenino , Fractales , Humanos , Luz , Microscopía de Interferencia/métodos , Modelos Estadísticos , Lesiones Precancerosas/patología , Reproducibilidad de los Resultados , Dispersión de Radiación , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/patologíaRESUMEN
The antiapoptotic Bcl-2 protein is overexpressed in a variety of cancers, particularly leukemias. In some cell types this is the result of enhanced stability of bcl-2 mRNA, which is controlled by elements in its 3'-untranslated region. Nucleolin is one of the proteins that binds to bcl-2 mRNA, thereby increasing its half-life. Here, we examined the site on the bcl-2 3'-untranslated region that is bound by nucleolin as well as the protein binding domains important for bcl-2 mRNA recognition. RNase footprinting and RNA fragment binding assays demonstrated that nucleolin binds to a 40-nucleotide region at the 5' end of the 136-nucleotide bcl-2 AU-rich element (ARE(bcl-2)). The first two RNA binding domains of nucleolin were sufficient for high affinity binding to ARE(bcl-2). In RNA decay assays, ARE(bcl-2) transcripts were protected from exosomal decay by the addition of nucleolin. AUF1 has been shown to recruit the exosome to mRNAs. When MV-4-11 cell extracts were immunodepleted of AUF1, the rate of decay of ARE(bcl-2) transcripts was reduced, indicating that nucleolin and AUF1 have opposing roles in bcl-2 mRNA turnover. When the function of nucleolin in MV-4-11 cells was impaired by treatment with the nucleolin-targeting aptamer AS1411, association of AUF1 with bcl-2 mRNA was increased. This suggests that the degradation of bcl-2 mRNA induced by AS1411 results from both interference with nucleolin protection of bcl-2 mRNA and recruitment of the exosome by AUF1. Based on our findings, we propose a model that illustrates the opposing roles of nucleolin and AUF1 in regulating bcl-2 mRNA stability.
Asunto(s)
Regiones no Traducidas 3' , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Modelos Biológicos , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Estabilidad del ARN/fisiología , Proteínas de Unión al ARN/metabolismo , Aptámeros de Nucleótidos , Células HeLa , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Humanos , Leucemia/genética , Leucemia/mortalidad , Oligodesoxirribonucleótidos/farmacología , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-bcl-2/genética , Estabilidad del ARN/efectos de los fármacos , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , NucleolinaRESUMEN
The DNA degradation potential and anti-cancer activities of copper nanoparticles of 4-5 nm size are reported. A dose dependent degradation of isolated DNA molecules by copper nanoparticles through generation of singlet oxygen was observed. Singlet oxygen scavengers such as sodium azide and Tris [hydroxyl methyl] amino methane were able to prevent the DNA degradation action of copper nanoparticles confirming the involvement of activated oxygen species in the degradation process. Additionally, it was observed that the copper nanoparticles are able to exert cytotoxic effect towards U937 and Hela cells of human histiocytic lymphoma and human cervical cancer origins, respectively by inducing apoptosis. The growth characteristics of U937 and Hela cells were studied applying various concentrations of the copper nanoparticles.
Asunto(s)
Antineoplásicos/farmacología , Cobre/uso terapéutico , Daño del ADN/efectos de los fármacos , Nanopartículas del Metal/administración & dosificación , Oxígeno Singlete/farmacología , Apoptosis/efectos de los fármacos , Depuradores de Radicales Libres/administración & dosificación , Células HeLa , Humanos , Azida Sódica/administración & dosificación , Trometamina/administración & dosificación , Células U937RESUMEN
BACKGROUND: High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers. RESULTS: We propose a method to estimate the proportion of non-variable CpG sites and eliminate those sites from further analyses. Our method is illustrated using data obtained by hybridizing DNA extracted from the peripheral blood mononuclear cells of 311 samples to an array assaying 1505 CpG sites. Results showed that a large proportion of the CpG sites did not show inter-individual variation in methylation. CONCLUSIONS: Our method resulted in a substantial improvement in association signals between methylation sites and outcome variables while controlling the false discovery rate at the same level.
Asunto(s)
Islas de CpG/genética , Metilación de ADN , ADN/genética , Perfilación de la Expresión Génica/métodos , Modelos Estadísticos , HumanosRESUMEN
Growing colonies of bacteria on the surface of thin agar plates exhibit fractal patterns as a result of nonlinear response to environmental conditions, such as nutrients, solidity of the agar medium and temperature. Here, we examine the effect of glucose on pattern formation by growing colonies of Bacillus thuringiensis isolate KPWP1. We also present the theoretical modeling of the colony growth of KPWP1 and the associated spatio-temporal patterns. Our experimental results are in excellent agreement with simulations based on a reaction-diffusion model that describes diffusion-limited aggregation and branching, in which individual cells move actively in the periphery, but become immotile in the inner regions of the growing colony. We obtain the Hausdorff fractal dimension of the colony patterns: D(H.Expt)=1.1969 and D(H, R.D.=)1.1965, for experiment and reaction-diffusion model, respectively. Results of our experiments and modeling clearly show how glucose at higher concentration can prove to be inhibitory for motility of growing colonies of B. thuringiensis cells on semisolid support and be responsible for changes in the growth pattern.
Asunto(s)
Bacillus thuringiensis/efectos de los fármacos , Bacillus thuringiensis/crecimiento & desarrollo , Adhesión Bacteriana/efectos de los fármacos , Fractales , Glucosa/farmacología , Modelos Teóricos , Adhesión Bacteriana/fisiología , Simulación por Computador , Movimiento/efectos de los fármacosRESUMEN
Phosphorylation is the most widely studied posttranslational modification (PTM) and is an important regulatory mechanism used during cellular responses to external stimuli. The kinases and phosphatases that regulate protein phosphorylation are known to be affected in many human diseases. Cigarette smoking causes cardiovascular disease (CVD). Endothelial cells play a pivotal role in CVD initiation and development; however, there have been limited investigations of the specific signaling cascades and protein phosphorylations activated by cigarette smoke in endothelial cells. The purpose of this research was to better understand the differential protein phosphorylation in endothelial cells stimulated with extracts of cigarette smoke total particulate matter (CS-TPM) in vitro. Human microvascular endothelial cells were exposed in vitro to CS-TPM at concentrations that were shown to cause endothelial cell dysfunction. The phosphorylated proteins were isolated using phosphoprotein-specific chromatography, followed by enzymatic digestion and nano-flow capillary liquid chromatography (ncap-LC) coupled to high resolution mass spectrometry. This study putatively identified 94 proteins in human microvascular endothelial cells that were differentially bound to a phosphoprotein-specific chromatography column following exposure to CS-TPM suggesting differential phosphorylation. Pathway analysis has also been conducted and confirmations of several observations have been made using immunoaffinity-based techniques (e.g., Western blotting).
Asunto(s)
Células Endoteliales/efectos de los fármacos , Microvasos/efectos de los fármacos , Nicotiana/química , Nicotiana/toxicidad , Proteínas/metabolismo , Humo/efectos adversos , Secuencia de Aminoácidos , Línea Celular , Movimiento Celular , Supervivencia Celular , Células Endoteliales/citología , Células Endoteliales/metabolismo , Humanos , Microvasos/citología , Microvasos/metabolismo , Datos de Secuencia Molecular , Péptidos/análisis , Péptidos/metabolismo , Fosforilación , Proteínas/análisis , Proteínas/química , Proteínas/genéticaRESUMEN
OSM (oncostatin M) is a pleiotropic cytokine belonging to the IL (interleukin) 6 family that modulates the growth of some cancer cell lines. We have found that PMA treatment of human U937 lymphoma cells increased the steady-state levels of OSM mRNA. Furthermore, the half-life of OSM mRNA was increased from 2.3 to 6.2 h. Measurement of mRNA/hnRNA (heterogeneous nuclear RNA) ratios in PMA-treated cells suggests further that the increase in OSM mRNA is due to enhanced mRNA stability. Consistent with this, synthetic OSM mRNA transcripts decayed faster in extracts of untreated U937 cells than in extracts of PMA-treated cells. The 3'-untranslated region of OSM mRNA contains a putative ARE (AU-rich element) that may play a role in mRNA stabilization. Addition of the OSM ARE motif to the 3'-end of beta-globin mRNA increased its decay rate in vitro. Decay assays with beta-globin-ARE(OSM) and beta-globin transcripts indicate that PMA induces mRNA stabilization in an ARE-dependent manner. PMA also induces at least five OSM ARE-binding proteins. Supershift assays indicated that HuR is present in PMA-induced OSM mRNA-protein complexes. PMA treatment appears to induce translocation of HuR from the nucleus to the cytoplasm. RNA-decay assays indicated that HuR stabilizes OSM RNA in vitro. Additionally, immunodepletion of HuR from U937 cell extracts led to more rapid decay of OSM transcripts. Collectively, these findings suggest that the ARE plays a role in PMA-induced stabilization of OSM mRNA and that this process involves multiple ARE-binding proteins, including HuR.
Asunto(s)
Linfoma/patología , Oncostatina M/genética , ARN Mensajero/genética , Acetato de Tetradecanoilforbol/farmacología , Secuencia de Bases , Clonación Molecular , Cartilla de ADN , Humanos , Linfoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células U937RESUMEN
BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common hematological malignancy affecting children. Despite significant progress and success in the treatment of ALL, a significant number of children continue to relapse and for them, outcome remains poor. Therefore, the search for novel therapeutic approaches is warranted. The aim of this study was to investigate the AMP activated protein kinase (AMPK) as a potential target in childhood acute lymphoblastic leukemia (ALL) subtypes characterized by non-random translocation signature profiles. We evaluated the effects of the AMPK activator AICAR on cell growth, cell cycle regulators and apoptosis of various childhood ALL cells. RESULTS: We found that treatment with AICAR inhibited cell proliferation, induced cell cycle arrest in G1-phase, and apoptosis in CCRF-CEM (T-ALL), NALM6 (Bp-ALL), REH (Bp-ALL, TEL/AML1) and SupB15 (Bp-ALL, BCR/ABL) cells. These effects were abolished by treatment with the adenosine kinase inhibitor 5'-iodotubericidin prior to addition of AICAR indicating that AICAR's cytotoxicity is mediated through AMPK activation. Moreover, we determined that growth inhibition exerted by AICAR was associated with activation of p38-MAPK and increased expression of the cell cycle regulators p27 and p53. We also demonstrated that AICAR mediated apoptosis through the mitochondrial pathway as revealed by the release of cytochrome C and cleavage of caspase 9. Additionally, AICAR treatment resulted in phosphorylation of Akt suggesting that activation of the PI3K/Akt pathway may represent a compensatory survival mechanism in response to apoptosis and/or cell cycle arrest. Combined treatment with AICAR and the mTOR inhibitor rapamycin resulted in additive anti-proliferative activity ALL cells. CONCLUSION: AICAR-mediated AMPK activation was found to be a proficient cytotoxic agent in ALL cells and the mechanism of its anti-proliferative and apoptotic effect appear to be mediated via activation of p38-MAPK pathway, increased expression of cell cycle inhibitory proteins p27 and p53, and downstream effects on the mTOR pathway, hence exhibiting therapeutic potential as a molecular target for the treatment of childhood ALL. Therefore, activation of AMPK by AICAR represents a novel approach to targeted therapy, and suggests a role for AICAR in combination therapy with inhibitors of the PI3K/Akt/mTOR pathways for the treatment of childhood in ALL.
Asunto(s)
Aminoimidazol Carboxamida/análogos & derivados , Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Profármacos/farmacología , Ribonucleótidos/farmacología , Proteínas Quinasas Activadas por AMP , Aminoimidazol Carboxamida/farmacología , Apoptosis/efectos de los fármacos , División Celular/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Activación Enzimática/efectos de los fármacos , Fase G1/efectos de los fármacos , Humanos , Imidazoles/farmacología , Leucemia-Linfoma de Células T del Adulto/enzimología , Leucemia-Linfoma de Células T del Adulto/patología , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/efectos de los fármacos , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Fosforilación , Leucemia-Linfoma Linfoblástico de Células Precursoras B/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridinas/farmacología , Sirolimus/farmacología , Tubercidina/análogos & derivados , Tubercidina/farmacología , Células Tumorales Cultivadas/efectos de los fármacos , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The 3'-UTR (untranslated region) of bcl-2 mRNA contains an ARE (AU-rich element) that potentially regulates the stability of bcl-2 mRNA in a cell specific fashion. Previous studies have demonstrated that multiple proteins interact with bcl-2 mRNA in HL-60 (human leukaemia-60) cells, potentially contributing to the overexpression of Bcl-2 protein. Treatment of HL-60 cells with taxol or okadaic acid has been shown to induce destabilization of bcl-2 mRNA, which was associated with decreased binding of trans-acting factors to bcl-2 mRNA. Nucleolin has been identified as one of the bcl-2 mRNA-binding proteins [Sengupta, Bandyopadhyay, Fernandes and Spicer (2004) J. Biol. Chem. 279, 10855-10863]. In an effort to identify additional bcl-2 mRNA-binding proteins, two polypeptides of approx. 45 kDa and 60 kDa were isolated from HL-60 cells by ARE(bcl-2) (transcripts that contain bcl-2 AREs) RNA affinity chromatography. These proteins were identified as the human proliferation associated protein, Ebp1, and human DRBP76 (double stranded RNA-binding protein 76) respectively, by MALDI (matrix-assisted laser-desorption ionization)-MS. RNA electrophoretic mobility shift assays indicated that recombinant Ebp1 binds to ARE(bcl-2) RNA but not to the group 1 ARE present in GM-CSF (granulocyte macrophage-colony stimulating factor) mRNA in vitro. Antibody supershift assays demonstrated that Ebp1 is present in protein-ARE(bcl-2) RNA complexes formed with cytosolic HL-60 extracts. The interaction of Ebp1 with bcl-2 mRNA in HL-60 cells was also demonstrated by RNA co-immunoprecipitation assays. This interaction was not detected in extracts of taxol-treated HL-60 cells. Immunoprecipitation assays further revealed that Ebp1 co-precipitates with nucleolin from HL-60 cytoplasmic extracts. The observation that co-precipitation was decreased when extracts were treated with RNase suggests that Ebp1 and nucleolin are present in the same bcl-2 mRNP (messenger ribonucleoprotein particle) complexes. RNA-decay assays further demonstrated that Ebp1 decreased the rate of decay of beta-globin-ARE(bcl-2) transcripts in HL-60 cell extracts. Collectively, these results indicate a novel function for Ebp1 in contributing to the regulation of bcl-2 expression in HL-60 cells.
Asunto(s)
Regiones no Traducidas 3'/genética , Proteínas Portadoras/fisiología , Genes bcl-2 , Células HL-60/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/análisis , Cromatografía de Afinidad , Citosol/química , Globinas/genética , Humanos , Inmunoprecipitación , Sustancias Macromoleculares , Datos de Secuencia Molecular , Proteínas del Factor Nuclear 90/análisis , Ácido Ocadaico/farmacología , Paclitaxel/farmacología , Fosfoproteínas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/metabolismo , ARN Mensajero/efectos de la radiación , Proteínas de Unión al ARN/aislamiento & purificación , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Rayos Ultravioleta , NucleolinaRESUMEN
BACKGROUND: Wear debris challenge of macrophages provokes the generation of proinflammatory cytokines, which contribute to periprosthetic osteolysis. However, it is not known whether this effect is accompanied by reprogramming of other cytokines present within the periprosthetic tissue that may be involved in anti-osteoclastogenic activities. In the present study, we examined the ability of wear debris particles to inhibit the signaling of two such cytokines, interleukin-6 and interferon-gamma. METHODS: Human osteoclast precursor cells were challenged with particles of titanium or polymethylmethacrylate bone cement prior to the addition of the cytokines interleukin-6 or interferon-gamma. Interleukin-6 signaling was determined by measuring the activation of STAT3 signal transduction with use of immunoblotting and electrophoretic mobility shift assays. Interferon-gamma signaling was determined by measuring the activation of STAT1 with use of immunoblotting and electrophoretic mobility shift assays and by measuring the expression of interferon-gamma-inducible genes with use of real-time reverse transcription-polymerase chain reaction assays. Involvement of mitogen-activated protein kinases in cytokine signaling was assessed by including mitogen-activated protein kinase inhibitors in these assays and also by means of immunoblot assessment of mitogen-activated protein kinase activation by wear debris particles. Wear debris modulation of expression of the cytokine suppressors SOCS1 and SOCS3 (as well as pro-inflammatory mediators) was assessed with use of real-time reverse transcription-polymerase chain reaction assays. RESULTS: Both titanium and polymethylmethacrylate particles potently inhibited interleukin-6-induced STAT3 activation in human osteoclast precursor cells. Inhibition of p38 mitogen-activated protein kinase, which is activated by titanium and polymethylmethacrylate, reversed the inhibitory effects of these particles on interleukin-6 signaling, whereas inhibition of ERK and JNK mitogen-activated protein kinases (which are also activated by both types of wear debris) had no effect. Titanium and polymethylmethacrylate also both induced expression of SOCS3, an inhibitor of interleukin-6 signaling. In addition to its effects on interleukin-6 signaling, titanium also profoundly inhibited the interferon-gamma-induced activation of STAT1 and the expression of interferon-gamma-inducible genes, whereas polymethylmethacrylate had no effect on interferon-gamma signaling. CONCLUSIONS: Titanium inhibits both interferon-gamma and interleukin-6 signaling in human osteoclast precursor cells, whereas polymethylmethacrylate bone cement inhibits only the latter. Wear particle inhibition of interleukin-6 specifically involves the activation of p38 mitogen-activated protein kinase and is accompanied by substantial induction of SOCS3, an inhibitor of interleukin-6 signaling. In contrast, titanium inhibition of interferon-gamma signaling is not dependent on mitogen-activated protein kinase activation and is accompanied by only modest induction of the interferon-gamma inhibitor SOCS1.
Asunto(s)
Cementos para Huesos/efectos adversos , Interferón gamma/fisiología , Interleucina-6/fisiología , Osteólisis/etiología , Osteólisis/prevención & control , Polimetil Metacrilato/efectos adversos , Titanio/efectos adversos , Células Cultivadas , Humanos , Prótesis Articulares/efectos adversos , Proteínas Quinasas Activadas por Mitógenos/fisiología , Osteoclastos/fisiologíaRESUMEN
Interspecific competition in bacteria governs colony growth dynamics and pattern formation. Here, we demonstrate an interesting phenomenon of interspecific competition between Bacillus cereus MSM-S1 and Pseudomonas sp. MSM-M1, where secretion of an inhibitor by Pseudomonas sp. is used as a strategy for survival. Although B. cereus grows faster than Pseudomonas sp., in the presence of Pseudomonas sp. the population of B. cereus reduces significantly, whereas Pseudomonas sp. do not show any marked alteration in their population growth. Appearance of a zone of inhibition between growing colonies of two species on nutrient agar prevents the expanding front of the MSM-S1 colony from accessing and depleting nutrients in the region occupied by MSM-M1, thereby aiding the survival of the slower growing MSM-M1 colonies. To support our experimental results, we present simulations, based on a chemotactic model of colony growth dynamics. We demonstrate that the chemical(s) secreted by Pseudomonas sp. is responsible for the observed inhibition of growth and spatial pattern of the B. cereus MSM-S1 colony. Our experimental results are in excellent agreement with the numerical results and confirm that secreted inhibitors enable Pseudomonas sp. to survive and coexist in the presence of faster growing B. cereus, in a common niche.
RESUMEN
The observation that overexpression of the anti-apoptotic protein Bcl-2 is associated with both cancer development and anti-cancer drug resistance suggests that factors which regulate bcl-2 expression may be important therapeutic targets. We report here that taxol or okadaic acid (OA) treatment of HL-60 cells reduced bcl-2 mRNA steady state levels to 50% of control cell levels in 20-24hr of treatment. The 3'-untranslated region of bcl-2 mRNA contains four potential A+U-rich elements (AREs), which are associated with mRNA destabilization. RNA gel mobility shift assays revealed that HL-60 cell extracts contain proteins that bind to RNA transcripts containing the first bcl-2 ARE (ARE 1). ARE 1 binding activity was substantially reduced in extracts of cells treated for 20 hr with taxol or OA and was abolished after 32 hr of treatment. UV-induced RNA cross-linking assays revealed that untreated HL-60 cell extracts contain approximately eight proteins, ranging in size from 32 to 100 kDa, that bind to ARE 1 RNA. Following 20 hr of taxol or OA treatment, RNA cross-linking to approximately 70 and approximately 38 kDa proteins was greatly reduced, and cross-linking to four proteins of 45-60 kDa sizes was progressively reduced with 10-34 hr of OA or taxol treatment. Collectively, these results suggest a novel action of taxol and OA on bcl-2 expression, which involves bcl-2 mRNA downregulation through inactivation of bcl-2 mRNA stabilizing factors.
Asunto(s)
Ácido Ocadaico/farmacología , Paclitaxel/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estabilidad del ARN/efectos de los fármacos , Proteínas de Unión al ARN/metabolismo , Células 3T3 , Animales , Células HL-60 , Humanos , Ratones , Proteínas Proto-Oncogénicas c-bcl-2/genética , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismoRESUMEN
Recent evidence suggests that the 3' untranslated region (3' UTR) of some mRNAs is a molecular hotspot for pathology. The 3' UTR of bcl-2 mRNA contains several AU-rich elements (AREs) that promote mRNA destabilization. Recent studies have demonstrated that the protein, nucleolin, binds to an ARE in bcl-2 mRNA, thereby protecting this mRNA from nuclease degradation. All-trans retinoic acid, taxol and okadiac acid induce downregulation or inactivation of nucleolin, which destabilizes bcl-2 mRNA and triggers apoptosis. The ARE instability elements in bcl-2 mRNA are potential therapeutic targets for inducing apoptosis and overcoming drug resistance in cancer cells.
Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Estabilidad del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Animales , Apoptosis/genética , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidoresRESUMEN
The bioavailability of organic contaminants to the degrading bacteria is a major limitation to efficient bioremediation of sites contaminated with hydrophobic pollutants. Such limitation of bioavailability can be overcome by steady-state biofilm-based reactor. The aim of this study was to examine the effect of such multicellular aggregation by naturally existing oil-degrading bacteria on crude oil degradation. Microorganisms, capable of utilizing crude oil as sole carbon source, were isolated from river, estuary and sea-water samples. Biochemical and 16S rDNA analysis of the best degraders of the three sources was found to belong to the Pseudomonas species. Interestingly, one of the isolates was found to be close to Pseudomonas otitidis family which is not reported yet as a degrader of crude oil. Biodegradation of crude oil was estimated by gas chromatography, and biofilm formation near oil-water interface was quantified by confocal laser scanning microscopy. Biofilm supported batches of the isolated Pseudomonas species were able to degrade crude oil much readily and extensively than the planktonic counterparts. Volumetric and topographic analysis revealed that biofilms formed in presence of crude oil accumulate higher biomass with greater thickness compared to the biofilms produced in presence of glucose as sole carbon source.
RESUMEN
Development of methods for quantification of cellular association and patterns in growing bacterial colony is of considerable current interest, not only to help understand multicellular behavior of a bacterial species but also to facilitate detection and identification of a bacterial species in a given space and under a given set of condition(s). We have explored quantitative spectral light scattering polarimetry for probing the morphological and structural changes taking place during colony formations of growing Bacillus thuringiensis bacteria under different conditions (in normal nutrient agar representing favorable growth environment, in the presence of 1% glucose as an additional nutrient, and 3 mM sodium arsenate as toxic material). The method is based on the measurement of spectral 3×3 Mueller matrices (which involves linear polarization measurements alone) and its subsequent analysis via polar decomposition to extract the intrinsic polarization parameters. Moreover, the fractal micro-optical parameter, namely, the Hurst exponent H, is determined via fractal-Born approximation-based inverse analysis of the polarization-preserving component of the light scattering spectra. Interesting differences are noted in the derived values for the H parameter and the intrinsic polarization parameters (linear diattenuation d, linear retardance δ, and linear depolarization Δ coefficients) of the growing bacterial colonies under different conditions. The bacterial colony growing in presence of 1% glucose exhibit the strongest fractality (lowest value of H), whereas that growing in presence of 3 mM sodium arsenate showed the weakest fractality. Moreover, the values for δ and d parameters are found to be considerably higher for the colony growing in presence of glucose, indicating more structured growth pattern. These findings are corroborated further with optical microscopic studies conducted on the same samples.
Asunto(s)
Bacillus thuringiensis/fisiología , Imagen Óptica/métodos , Análisis Espectral/métodos , Bacillus thuringiensis/química , Bacillus thuringiensis/citología , Bacillus thuringiensis/crecimiento & desarrollo , Fractales , Luz , Dispersión de RadiaciónRESUMEN
Three Cu(II) complexes of bis-pyrazole based ligands have been synthesized and structurally characterized by X-ray crystallography. One of the ligand (L2) contains a methionine ester conjugated to a bis-pyrazole carboxylate through an amide linkage. The binding constant for complexes 1-3 with CT DNA are of the order of 10(4) M(-1). The crystal structure suggests that the axial Cu-O bonds (ca. 2.31(4) Å) are relatively labile and hence during the redox cycle with ascorbic acid and oxygen one or both the axial Cu-O bonds might open to promote copper oxygen reaction and generate ROS. The chemical nuclease activity of complexes 1-3 in dark, show complete relaxation of supercoiled DNA at 100 µM concentration in presence of ascorbic acid (H2A). The mechanistic investigation suggests that the complexes 1 and 2 show involvement of peroxo species whereas 3 shows involvement of both singlet oxygen and peroxo species in DNA cleavage. The singlet oxygen formation in dark is otherwise unfavourable but the presence of methionine as pendant arm in L2 might activate the generation of singlet oxygen from the metal generated peroxo species. The results of DNA cleavage studies suggest that methionine based copper(II) complexes can promote dual pathway for DNA cleavage. Probing the cytotoxic activity of these complexes on MCF-7, human breast cancer cell line shows that 3 is the most effective one with an IC50 of 70(2) µM.