Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 378(2178): 20190494, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32713313

RESUMEN

Two weeks of high-frequency radar measurements collected at the Alderney Race are compared with the results of a three-dimensional fully coupled wave-current model. Spatial current measurements are rare in this site, otherwise well investigated through modelling. Thus, the radar measurements offer a unique opportunity to examine the spatial reliability of numerical results, and can help to improve our understanding of the complex currents in the area. Comparison of observed and modelled surface current velocities showed a good agreement between the methods, represented by root mean squared errors ranging from 14 to 40 cm s-1 and from 18 to 60 cm s-1 during neap and spring tides, respectively. Maximum errors were found in shallow regions with consistently high current velocities, represented by mean neap and spring magnitudes of 1.25 m s-1 and 2.7 m s-1, respectively. Part of the differences between modelled and observed surface currents in these areas are thought to derive from limitations in the k-epsilon turbulence model used to simulate vertical mixing, when the horizontal turbulent transport is high. In addition, radar radial currents showed increased variance over the same regions, and might also be contributing to the discrepancies found. Correlation analyses yielded magnitudes above 0.95 over the entire study area, with better agreement during spring than during neap tides, probably because of an increase in the phase lag between radar and model velocities during the latter. This article is part of the theme issue 'New insights on tidal dynamics and tidal energy harvesting in the Alderney Race'.

2.
Philos Trans A Math Phys Eng Sci ; 378(2178): 20190625, 2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32713311

RESUMEN

The Alderney Race is assumed to have the largest tidal-stream energy potential in the north-western European coastal seas. Interaction of the powerful tidal stream with strong wind, high waves and irregular bathymetry creates hydrodynamic conditions of extreme complexity, with high levels of turbulence. A comprehensive dataset has been created to improve the understanding of physical processes, turbulence, tidal stream and resource variability at the site. The database contains a large amount of oceanographic and meteorological measurements acquired in Alderney Race in 2017-2018. This exceptionally long period of observations (nearly one year) became possible due to modern tools and strategies of data acquisition. The paper presents some significant results from the database analysis. Among many results, we would like to underline the following: (i) a wide range of variability of mean flow and sea state parameters was documented; (ii) exceptionally large values of current velocity (7 m s-1) and significant wave height (8 m) were measured during extreme meteorological conditions; (iii) high-frequency variability of current speed during storm events was also found to be very large, with the standard deviation of velocity reaching 0.3 m s-1 in the bottom boundary layer, and 0.6 m s-1 in the surface layer; and (iv) predominant wind and wave direction relative to the flow impacts the wave height and significantly increases the turbulence kinetic energy of the flow. To our knowledge, this is the largest multi-variable database available on potential tidal energy sites. The results of database analysis can represent a significant advance in environmental conditions and resource characterization and provide advanced information to turbine developers. This article is part of the theme issue 'New insights on tidal dynamics and tidal energy harvesting in the Alderney Race'.

3.
Sci Total Environ ; 947: 174372, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38960183

RESUMEN

The southeastern Bay of Biscay has been described as a "dead end" for floating marine litter, often accumulating along small-scale linear streaks. Coastal Current Convergence Structures (CCS), often associated with vertical motions at river plume edges, estuarine fronts, or other physical processes, can be at the origin of the accumulation. Understanding the formation of CCS and their role in the transport of marine litter is essential to better quantify and to help mitigate marine litter pollution. The Lagrangian framework, used to estimate the absolute dispersion, and the finite-size Lyapunov exponents (FSLE), have proved very effective for identifying CCS in the current velocity field. However, the quality of CCS identification depends strongly on the Eulerian fields. Two surface current velocity data sets were used in the analysis: the remotely sensed velocities from the EuskOOS High-Frequency Radar (HFR) network and velocities from three-dimensional model outputs. They were complemented by drifting buoy velocity measurements. An optimization method, involving the fusion of drifting buoys and HFR velocities is proposed to better reconstruct the fine-scale structure of the current velocity field. Merging these two sources of velocity data reduced the mean Lagrangian error and the Root Mean Square Error (RMSE) by 50 % and 30 % respectively, significantly improving velocity reconstruction. FSLE ridgelines obtained from the Lagrangian analysis of optimized velocities were compared with remotely sensed concentrations of Chlorophyll-a. It was shown that ridgelines control the spatial distribution of phytoplankton. They fundamentally represent the CCS which can potentially affect marine litter aggregation. Analysis of the absolute dispersion revealed large stirring in the alongshore direction which was also confirmed by spatial distribution of FSLE ridgelines. The alignment between FSLE ridgelines and patterns of high Chlorophyll-a concentration was observed, often determining the limits of river plume expansion in the study area.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA