Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 174(2): 422-432.e13, 2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29909987

RESUMEN

Increased androgen receptor (AR) activity drives therapeutic resistance in advanced prostate cancer. The most common resistance mechanism is amplification of this locus presumably targeting the AR gene. Here, we identify and characterize a somatically acquired AR enhancer located 650 kb centromeric to the AR. Systematic perturbation of this enhancer using genome editing decreased proliferation by suppressing AR levels. Insertion of an additional copy of this region sufficed to increase proliferation under low androgen conditions and to decrease sensitivity to enzalutamide. Epigenetic data generated in localized prostate tumors and benign specimens support the notion that this region is a developmental enhancer. Collectively, these observations underscore the importance of epigenomic profiling in primary specimens and the value of deploying genome editing to functionally characterize noncoding elements. More broadly, this work identifies a therapeutic vulnerability for targeting the AR and emphasizes the importance of regulatory elements as highly recurrent oncogenic drivers.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/metabolismo , Acetilación , Adulto , Anciano , Antineoplásicos/farmacología , Benzamidas , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Metilación de ADN , Edición Génica , Histonas/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Metástasis de la Neoplasia , Nitrilos , Feniltiohidantoína/análogos & derivados , Feniltiohidantoína/farmacología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/genética
2.
Cell ; 152(3): 633-41, 2013 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-23374354

RESUMEN

Germline determinants of gene expression in tumors are infrequently studied due to the complexity of transcript regulation caused by somatically acquired alterations. We performed expression quantitative trait locus (eQTL)-based analyses using the multi-level information provided in The Cancer Genome Atlas (TCGA). Of the factors we measured, cis-acting eQTLs accounted for 1.2% of the total variation of tumor gene expression, while somatic copy-number alteration and CpG methylation accounted for 7.3% and 3.3%, respectively. eQTL analyses of 15 previously reported breast cancer risk loci resulted in the discovery of three variants that are significantly associated with transcript levels (false discovery rate [FDR] < 0.1). Our trans-based analysis identified an additional three risk loci to act through ESR1, MYC, and KLF4. These findings provide a more comprehensive picture of gene expression determinants in breast cancer as well as insights into the underlying biology of breast cancer risk loci.


Asunto(s)
Neoplasias de la Mama/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Humanos , Factor 4 Similar a Kruppel
3.
Am J Hum Genet ; 111(6): 1061-1083, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38723632

RESUMEN

To identify credible causal risk variants (CCVs) associated with different histotypes of epithelial ovarian cancer (EOC), we performed genome-wide association analysis for 470,825 genotyped and 10,163,797 imputed SNPs in 25,981 EOC cases and 105,724 controls of European origin. We identified five histotype-specific EOC risk regions (p value <5 × 10-8) and confirmed previously reported associations for 27 risk regions. Conditional analyses identified an additional 11 signals independent of the primary signal at six risk regions (p value <10-5). Fine mapping identified 4,008 CCVs in these regions, of which 1,452 CCVs were located in ovarian cancer-related chromatin marks with significant enrichment in active enhancers, active promoters, and active regions for CCVs from each EOC histotype. Transcriptome-wide association and colocalization analyses across histotypes using tissue-specific and cross-tissue datasets identified 86 candidate susceptibility genes in known EOC risk regions and 32 genes in 23 additional genomic regions that may represent novel EOC risk loci (false discovery rate <0.05). Finally, by integrating genome-wide HiChIP interactome analysis with transcriptome-wide association study (TWAS), variant effect predictor, transcription factor ChIP-seq, and motifbreakR data, we identified candidate gene-CCV interactions at each locus. This included risk loci where TWAS identified one or more candidate susceptibility genes (e.g., HOXD-AS2, HOXD8, and HOXD3 at 2q31) and other loci where no candidate gene was identified (e.g., MYC and PVT1 at 8q24) by TWAS. In summary, this study describes a functional framework and provides a greater understanding of the biological significance of risk alleles and candidate gene targets at EOC susceptibility loci identified by a genome-wide association study.


Asunto(s)
Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Neoplasias Ováricas , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/genética , Transcriptoma , Factores de Riesgo , Genómica/métodos , Estudios de Casos y Controles , Multiómica
4.
Am J Hum Genet ; 108(11): 2071-2085, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34699744

RESUMEN

Genome-wide association studies (GWASs) of prostate cancer have identified >250 significant risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we sought to identify and characterize risk-harboring regulatory elements by integrating epigenomes from primary prostate tumor and normal tissues of 27 individuals across the H3K27ac, H3K4me3, and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. We identified 7,371 peaks with significant allele specificity (allele-specific quantitative trait locus [asQTL] peaks). Showcasing their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most enriched for prostate cancer GWAS heritability (40×), significantly higher than corresponding non-asQTL H3K27ac peaks (14×) or coding regions (14×). Surprisingly, fine-mapped GWAS risk variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL peaks that were differentially imbalanced with respect to tumor-normal states. These data pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where some germline variants become reactivated during or after transformation and can be captured by epigenomic profiling of the tumor. Our study demonstrates the power of allele specificity in chromatin signals to uncover GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer risk, and prioritizes multiple loci for experimental follow-up.


Asunto(s)
Alelos , Epigénesis Genética , Predisposición Genética a la Enfermedad , Próstata/metabolismo , Neoplasias de la Próstata/genética , Elementos de Facilitación Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Sitios de Carácter Cuantitativo
5.
Am J Hum Genet ; 108(12): 2284-2300, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822763

RESUMEN

Genome-wide association studies (GWASs) have identified more than 200 prostate cancer (PrCa) risk regions, which provide potential insights into causal mechanisms. Multiple lines of evidence show that a significant proportion of PrCa risk can be explained by germline causal variants that dysregulate nearby target genes in prostate-relevant tissues, thus altering disease risk. The traditional approach to explore this hypothesis has been correlating GWAS variants with steady-state transcript levels, referred to as expression quantitative trait loci (eQTLs). In this work, we assess the utility of chromosome conformation capture (3C) coupled with immunoprecipitation (HiChIP) to identify target genes for PrCa GWAS risk loci. We find that interactome data confirm previously reported PrCa target genes identified through GWAS/eQTL overlap (e.g., MLPH). Interestingly, HiChIP identifies links between PrCa GWAS variants and genes well-known to play a role in prostate cancer biology (e.g., AR) that are not detected by eQTL-based methods. HiChIP predicted enhancer elements at the AR and NKX3-1 prostate cancer risk loci, and both were experimentally confirmed to regulate expression of the corresponding genes through CRISPR interference (CRISPRi) perturbation in LNCaP cells. Our results demonstrate that looping data harbor additional information beyond eQTLs and expand the number of PrCa GWAS loci that can be linked to candidate susceptibility genes.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Código de Histonas/genética , Neoplasias de la Próstata/genética , Línea Celular Tumoral , Cromosomas Humanos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Técnicas Genéticas , Humanos , Masculino , Sitios de Carácter Cuantitativo
6.
Am J Hum Genet ; 107(4): 622-635, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32946763

RESUMEN

Quantifying the functional effects of complex disease risk variants can provide insights into mechanisms underlying disease biology. Genome-wide association studies have identified 39 regions associated with risk of epithelial ovarian cancer (EOC). The vast majority of these variants lie in the non-coding genome, where they likely function through interaction with gene regulatory elements. In this study we first estimated the heritability explained by known common low penetrance risk alleles for EOC. The narrow sense heritability (hg2) of EOC overall and high-grade serous ovarian cancer (HGSOCs) were estimated to be 5%-6%. Partitioned SNP heritability across broad functional categories indicated a significant contribution of regulatory elements to EOC heritability. We collated epigenomic profiling data for 77 cell and tissue types from Roadmap Epigenomics and ENCODE, and from H3K27Ac ChIP-seq data generated in 26 ovarian cancer and precursor-related cell and tissue types. We identified significant enrichment of risk single-nucleotide polymorphisms (SNPs) in active regulatory elements marked by H3K27Ac in HGSOCs. To further investigate how risk SNPs in active regulatory elements influence predisposition to ovarian cancer, we used motifbreakR to predict the disruption of transcription factor binding sites. We identified 469 candidate causal risk variants in H3K27Ac peaks that are predicted to significantly break transcription factor (TF) motifs. The most frequently broken motif was REST (p value = 0.0028), which has been reported as both a tumor suppressor and an oncogene. Overall, these systematic functional annotations with epigenomic data improve interpretation of EOC risk variants and shed light on likely cells of origin.


Asunto(s)
Carcinoma Epitelial de Ovario/genética , Proteínas Co-Represoras/genética , Cistadenocarcinoma Seroso/genética , Elementos de Facilitación Genéticos , Histonas/genética , Proteínas del Tejido Nervioso/genética , Neoplasias Ováricas/genética , Alelos , Sitios de Unión , Carcinoma Epitelial de Ovario/diagnóstico , Carcinoma Epitelial de Ovario/patología , Mapeo Cromosómico , Proteínas Co-Represoras/metabolismo , Cistadenocarcinoma Seroso/diagnóstico , Cistadenocarcinoma Seroso/patología , Femenino , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Patrón de Herencia , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/patología , Penetrancia , Polimorfismo de Nucleótido Simple , Riesgo
7.
Nat Commun ; 15(1): 9494, 2024 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-39489778

RESUMEN

Androgen receptor (AR)-mediated transcription plays a critical role in development and prostate cancer growth. AR drives gene expression by binding to thousands of cis-regulatory elements (CRE) that loop to hundreds of target promoters. With multiple CREs interacting with a single promoter, it remains unclear how individual AR bound CREs contribute to gene expression. To characterize the involvement of these CREs, we investigate the AR-driven epigenetic and chromosomal chromatin looping changes by generating a kinetic multi-omic dataset comprised of steady-state mRNA, chromatin accessibility, transcription factor binding, histone modifications, chromatin looping, and nascent RNA. Using an integrated regulatory network, we find that AR binding induces sequential changes in the epigenetic features at CREs, independent of gene expression. Further, we show that binding of AR does not result in a substantial rewiring of chromatin loops, but instead increases the contact frequency of pre-existing loops to target promoters. Our results show that gene expression strongly correlates to the changes in contact frequency. We then propose and experimentally validate an unbalanced multi-enhancer model where the impact on gene expression of AR-bound enhancers is heterogeneous, and is proportional to their contact frequency with target gene promoters. Overall, these findings provide insights into AR-mediated gene expression upon acute androgen simulation and develop a mechanistic framework to investigate nuclear receptor mediated perturbations.


Asunto(s)
Cromatina , Epigénesis Genética , Regiones Promotoras Genéticas , Neoplasias de la Próstata , Receptores Androgénicos , Transcripción Genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Cromatina/metabolismo , Cromatina/genética , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Elementos de Facilitación Genéticos , Unión Proteica
8.
bioRxiv ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38260576

RESUMEN

Androgen receptor (AR) splice variants, of which ARv7 is the most common, are increased in prostate cancer (PC) that develops resistance to androgen signaling inhibitor drugs, but the extent to which these variants drive AR activity, and whether they have novel functions or dependencies, remain to be determined. We generated a subline of VCaP PC cells (VCaP16) that is resistant to the AR inhibitor enzalutamide (ENZ) and found that AR activity was independent of the full-length AR (ARfl), despite its continued high-level expression, and was instead driven by ARv7. The ARv7 cistrome and transcriptome in VCaP16 cells mirrored that of the ARfl in VCaP cells, although ARv7 chromatin binding was weaker, and strong ARv7 binding sites correlated with higher affinity ARfl binding sites across multiple models and clinical samples. Notably, although ARv7 expression in VCaP cells increased rapidly in response to ENZ, there was a long lag before it gained chromatin binding and transcriptional activity. This lag was associated with an increase in chromatin accessibility, with the AR and nuclear factor I (NFI) motifs being most enriched at these more accessible sites. Moreover, the transcriptional effects of combined NFIB and NFIX knockdown versus ARv7 knockdown were highly correlated. These findings indicate that ARv7 can drive the AR program, but that its activity is dependent on adaptations that increase chromatin accessibility to enhance its intrinsically weak chromatin binding.

9.
Clin Cancer Res ; 30(17): 3798-3811, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912901

RESUMEN

PURPOSE: Histologic transformation to small cell lung cancer (SCLC) is a mechanism of treatment resistance in patients with advanced oncogene-driven lung adenocarcinoma (LUAD) that currently requires histologic review for diagnosis. Herein, we sought to develop an epigenomic cell-free DNA (cfDNA)-based approach to noninvasively detect small cell transformation in patients with EGFR mutant (EGFRm) LUAD. EXPERIMENTAL DESIGN: To characterize the epigenomic landscape of transformed (t)SCLC relative to LUAD and de novo SCLC, we performed chromatin immunoprecipitation sequencing (ChIP-seq) to profile the histone modifications H3K27ac, H3K4me3, and H3K27me3; methylated DNA immunoprecipitation sequencing (MeDIP-seq); assay for transposase-accessible chromatin sequencing; and RNA sequencing on 26 lung cancer patient-derived xenograft (PDX) tumors. We then generated and analyzed H3K27ac ChIP-seq, MeDIP-seq, and whole genome sequencing cfDNA data from 1 mL aliquots of plasma from patients with EGFRm LUAD with or without tSCLC. RESULTS: Analysis of 126 epigenomic libraries from the lung cancer PDXs revealed widespread epigenomic reprogramming between LUAD and tSCLC, with a large number of differential H3K27ac (n = 24,424), DNA methylation (n = 3,298), and chromatin accessibility (n = 16,352) sites between the two histologies. Tumor-informed analysis of each of these three epigenomic features in cfDNA resulted in accurate noninvasive discrimination between patients with EGFRm LUAD versus tSCLC [area under the receiver operating characteristic curve (AUROC) = 0.82-0.87]. A multianalyte cfDNA-based classifier integrating these three epigenomic features discriminated between EGFRm LUAD versus tSCLC with an AUROC of 0.94. CONCLUSIONS: These data demonstrate the feasibility of detecting small cell transformation in patients with EGFRm LUAD through epigenomic cfDNA profiling of 1 mL of patient plasma.


Asunto(s)
Adenocarcinoma del Pulmón , Ácidos Nucleicos Libres de Células , Epigenómica , Receptores ErbB , Neoplasias Pulmonares , Mutación , Humanos , Receptores ErbB/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/sangre , Adenocarcinoma del Pulmón/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Ácidos Nucleicos Libres de Células/genética , Ácidos Nucleicos Libres de Células/sangre , Epigenómica/métodos , Ratones , Animales , Biomarcadores de Tumor/genética , Femenino , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/sangre , Carcinoma Pulmonar de Células Pequeñas/diagnóstico , Metilación de ADN , Masculino , Transformación Celular Neoplásica/genética , Epigénesis Genética
10.
Cell Rep ; 43(6): 114350, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38870013

RESUMEN

Renal cell carcinoma with sarcomatoid differentiation (sRCC) is associated with poor survival and a heightened response to immune checkpoint inhibitors (ICIs). Two major barriers to improving outcomes for sRCC are the limited understanding of its gene regulatory programs and the low diagnostic yield of tumor biopsies due to spatial heterogeneity. Herein, we characterized the epigenomic landscape of sRCC by profiling 107 epigenomic libraries from tissue and plasma samples from 50 patients with RCC and healthy volunteers. By profiling histone modifications and DNA methylation, we identified highly recurrent epigenomic reprogramming enriched in sRCC. Furthermore, CRISPRa experiments implicated the transcription factor FOSL1 in activating sRCC-associated gene regulatory programs, and FOSL1 expression was associated with the response to ICIs in RCC in two randomized clinical trials. Finally, we established a blood-based diagnostic approach using detectable sRCC epigenomic signatures in patient plasma, providing a framework for discovering epigenomic correlates of tumor histology via liquid biopsy.


Asunto(s)
Carcinoma de Células Renales , Epigenómica , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Epigenómica/métodos , Metilación de ADN/genética , Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Masculino , Femenino , Epigénesis Genética , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-fos
11.
Nat Commun ; 14(1): 8084, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38057321

RESUMEN

We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a method for studying protein-protein interaction (PPI) networks within enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data with tissue-specific PPIs to define enhancer-promoter PPI networks (EPINs). We validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell lines. Our analysis detected EPIN clusters enriched with the architectural protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence was coupled with the prevalence of prostate cancer (PrCa) single nucleotide polymorphisms (SNPs) within the same EPIN clusters, suggesting functional implications in PrCa. Within the EPINs displaying enrichments in both CTCF and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our identified SNPs through CRISPR/Cas9 knockout and RNAi screens experiments. Here we show that PENGUIN provides insights into the intricate interplay between enhancer-promoter interactions and PPI networks, which are crucial for identifying key genes and potential intervention targets. A dedicated server is available at https://penguin.life.bsc.es/ .


Asunto(s)
Neoplasias de la Próstata , Spheniscidae , Masculino , Animales , Humanos , Spheniscidae/genética , Elementos de Facilitación Genéticos/genética , Regiones Promotoras Genéticas/genética , Neoplasias de la Próstata/genética , Proteínas/genética
12.
Nat Cancer ; 4(5): 699-715, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37038004

RESUMEN

Tumor expression of prostate-specific membrane antigen (PSMA) is lost in 15-20% of men with castration-resistant prostate cancer (CRPC), yet the underlying mechanisms remain poorly defined. In androgen receptor (AR)-positive CRPC, we observed lower PSMA expression in liver lesions versus other sites, suggesting a role of the microenvironment in modulating PSMA. PSMA suppression was associated with promoter histone 3 lysine 27 methylation and higher levels of neutral amino acid transporters, correlating with 18F-fluciclovine uptake on positron emission tomography imaging. While PSMA is regulated by AR, we identified a subset of AR-negative CRPC with high PSMA. HOXB13 and AR co-occupancy at the PSMA enhancer and knockout models point to HOXB13 as an upstream regulator of PSMA in AR-positive and AR-negative prostate cancer. These data demonstrate how PSMA expression is differentially regulated across metastatic lesions and in the context of the AR, which may inform selection for PSMA-targeted therapies and development of complementary biomarkers.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Próstata/metabolismo , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Tomografía de Emisión de Positrones/métodos , Microambiente Tumoral
13.
Nat Commun ; 14(1): 5118, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612286

RESUMEN

To date, single-nucleotide polymorphisms (SNPs) have been the most intensively investigated class of polymorphisms in genome wide associations studies (GWAS), however, other classes such as insertion-deletion or multiple nucleotide length polymorphism (MNLPs) may also confer disease risk. Multiple reports have shown that the 5p15.33 prostate cancer risk region is a particularly strong expression quantitative trait locus (eQTL) for Iroquois Homeobox 4 (IRX4) transcripts. Here, we demonstrate using epigenome and genome editing that a biallelic (21 and 47 base pairs (bp)) MNLP is the causal variant regulating IRX4 transcript levels. In LNCaP prostate cancer cells (homozygous for the 21 bp short allele), a single copy knock-in of the 47 bp long allele potently alters the chromatin state, enabling de novo functional binding of the androgen receptor (AR) associated with increased chromatin accessibility, Histone 3 lysine 27 acetylation (H3K27ac), and ~3-fold upregulation of IRX4 expression. We further show that an MNLP is amongst the strongest candidate susceptibility variants at two additional prostate cancer risk loci. We estimated that at least 5% of prostate cancer risk loci could be explained by functional non-SNP causal variants, which may have broader implications for other cancers GWAS. More generally, our results underscore the importance of investigating other classes of inherited variation as causal mediators of human traits.


Asunto(s)
Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , Masculino , Cromatina/genética , Acetilación , Alelos , Nucleótidos
14.
Nat Commun ; 14(1): 346, 2023 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681680

RESUMEN

While the mutational and transcriptional landscapes of renal cell carcinoma (RCC) are well-known, the epigenome is poorly understood. We characterize the epigenome of clear cell (ccRCC), papillary (pRCC), and chromophobe RCC (chRCC) by using ChIP-seq, ATAC-Seq, RNA-seq, and SNP arrays. We integrate 153 individual data sets from 42 patients and nominate 50 histology-specific master transcription factors (MTF) to define RCC histologic subtypes, including EPAS1 and ETS-1 in ccRCC, HNF1B in pRCC, and FOXI1 in chRCC. We confirm histology-specific MTFs via immunohistochemistry including a ccRCC-specific TF, BHLHE41. FOXI1 overexpression with knock-down of EPAS1 in the 786-O ccRCC cell line induces transcriptional upregulation of chRCC-specific genes, TFCP2L1, ATP6V0D2, KIT, and INSRR, implicating FOXI1 as a MTF for chRCC. Integrating RCC GWAS risk SNPs with H3K27ac ChIP-seq and ATAC-seq data reveals that risk-variants are significantly enriched in allelically-imbalanced peaks. This epigenomic atlas in primary human samples provides a resource for future investigation.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Epigenómica , Factores de Transcripción/genética , Oncogenes , Factores de Transcripción Forkhead/genética
15.
Nat Med ; 29(11): 2737-2741, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37865722

RESUMEN

Although circulating tumor DNA (ctDNA) assays are increasingly used to inform clinical decisions in cancer care, they have limited ability to identify the transcriptional programs that govern cancer phenotypes and their dynamic changes during the course of disease. To address these limitations, we developed a method for comprehensive epigenomic profiling of cancer from 1 ml of patient plasma. Using an immunoprecipitation-based approach targeting histone modifications and DNA methylation, we measured 1,268 epigenomic profiles in plasma from 433 individuals with one of 15 cancers. Our assay provided a robust proxy for transcriptional activity, allowing us to infer the expression levels of diagnostic markers and drug targets, measure the activity of therapeutically targetable transcription factors and detect epigenetic mechanisms of resistance. This proof-of-concept study in advanced cancers shows how plasma epigenomic profiling has the potential to unlock clinically actionable information that is currently accessible only via direct tissue sampling.


Asunto(s)
ADN Tumoral Circulante , Neoplasias , Humanos , Epigenómica , Biomarcadores de Tumor/genética , Neoplasias/genética , ADN Tumoral Circulante/genética , Biopsia Líquida/métodos , Mutación
16.
Cell Rep Med ; 3(3): 100542, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35492879

RESUMEN

Endometriosis is associated with increased risk of epithelial ovarian cancers (EOCs). Using data from large endometriosis and EOC genome-wide association meta-analyses, we estimate the genetic correlation and evaluate the causal relationship between genetic liability to endometriosis and EOC histotypes, and identify shared susceptibility loci. We estimate a significant genetic correlation (rg) between endometriosis and clear cell (rg = 0.71), endometrioid (rg = 0.48), and high-grade serous (rg = 0.19) ovarian cancer, associations supported by Mendelian randomization analyses. Bivariate meta-analysis identified 28 loci associated with both endometriosis and EOC, including 19 with evidence for a shared underlying association signal. Differences in the shared risk suggest different underlying pathways may contribute to the relationship between endometriosis and the different histotypes. Functional annotation using transcriptomic and epigenomic profiles of relevant tissues/cells highlights several target genes. This comprehensive analysis reveals profound genetic overlap between endometriosis and EOC histotypes with valuable genomic targets for understanding the biological mechanisms linking the diseases.


Asunto(s)
Endometriosis , Neoplasias Glandulares y Epiteliales , Neoplasias Ováricas , Carcinoma Epitelial de Ovario/genética , Endometriosis/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Glandulares y Epiteliales/complicaciones , Neoplasias Ováricas/genética
17.
Clin Cancer Res ; 28(5): 928-938, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907080

RESUMEN

PURPOSE: Neuroendocrine prostate cancer (NEPC) is a resistance phenotype that emerges in men with metastatic castration-resistant prostate adenocarcinoma (CR-PRAD) and has important clinical implications, but is challenging to detect in practice. Herein, we report a novel tissue-informed epigenetic approach to noninvasively detect NEPC. EXPERIMENTAL DESIGN: We first performed methylated immunoprecipitation and high-throughput sequencing (MeDIP-seq) on a training set of tumors, identified differentially methylated regions between NEPC and CR-PRAD, and built a model to predict the presence of NEPC (termed NEPC Risk Score). We then performed MeDIP-seq on cell-free DNA (cfDNA) from two independent cohorts of men with NEPC or CR-PRAD and assessed the accuracy of the model to predict the presence NEPC. RESULTS: The test cohort comprised cfDNA samples from 48 men, 9 with NEPC and 39 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 4.3 × 10-7) and discriminated between NEPC and CR-PRAD with high accuracy (AUROC 0.96). The optimal NEPC Risk Score cutoff demonstrated 100% sensitivity and 90% specificity for detecting NEPC. The independent, multi-institutional validation cohort included cfDNA from 53 men, including 12 with NEPC and 41 with CR-PRAD. NEPC Risk Scores were significantly higher in men with NEPC than CR-PRAD (P = 7.5×10-12) and perfectly discriminated NEPC from CR-PRAD (AUROC 1.0). Applying the predefined NEPC Risk Score cutoff to the validation cohort resulted in 100% sensitivity and 95% specificity for detecting NEPC. CONCLUSIONS: Tissue-informed cfDNA methylation analysis is a promising approach for noninvasive detection of NEPC in men with advanced prostate cancer.


Asunto(s)
Carcinoma Neuroendocrino , Ácidos Nucleicos Libres de Células , Tumores Neuroendocrinos , Neoplasias de la Próstata , Carcinoma Neuroendocrino/genética , Ácidos Nucleicos Libres de Células/genética , Metilación de ADN , Humanos , Masculino , Tumores Neuroendocrinos/patología , Próstata/patología , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo
18.
Nat Commun ; 13(1): 7367, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36450752

RESUMEN

Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Neoplasias de la Próstata/genética , Próstata , Cromatina
19.
Nat Genet ; 54(9): 1364-1375, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36071171

RESUMEN

Many genetic variants affect disease risk by altering context-dependent gene regulation. Such variants are difficult to study mechanistically using current methods that link genetic variation to steady-state gene expression levels, such as expression quantitative trait loci (eQTLs). To address this challenge, we developed the cistrome-wide association study (CWAS), a framework for identifying genotypic and allele-specific effects on chromatin that are also associated with disease. In prostate cancer, CWAS identified regulatory elements and androgen receptor-binding sites that explained the association at 52 of 98 known prostate cancer risk loci and discovered 17 additional risk loci. CWAS implicated key developmental transcription factors in prostate cancer risk that are overlooked by eQTL-based approaches due to context-dependent gene regulation. We experimentally validated associations and demonstrated the extensibility of CWAS to additional epigenomic datasets and phenotypes, including response to prostate cancer treatment. CWAS is a powerful and biologically interpretable paradigm for studying variants that influence traits by affecting transcriptional regulation.


Asunto(s)
Cromatina , Neoplasias de la Próstata , Cromatina/genética , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Neoplasias de la Próstata/genética , Sitios de Carácter Cuantitativo/genética
20.
JCI Insight ; 7(10)2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35603787

RESUMEN

The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Andrógenos , Humanos , Masculino , Recurrencia Local de Neoplasia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Receptores Androgénicos/genética , Testosterona
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA