Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38732240

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) infection has rapidly spread through various routes. A genomic analysis of clinical MRSA samples revealed an unknown protein, Sav2152, predicted to be a haloacid dehalogenase (HAD)-like hydrolase, making it a potential candidate for a novel drug target. In this study, we determined the crystal structure of Sav2152, which consists of a C2-type cap domain and a core domain. The core domain contains four motifs involved in phosphatase activity that depend on the presence of Mg2+ ions. Specifically, residues D10, D12, and D233, which closely correspond to key residues in structurally homolog proteins, are responsible for binding to the metal ion and are known to play critical roles in phosphatase activity. Our findings indicate that the Mg2+ ion known to stabilize local regions surrounding it, however, paradoxically, destabilizes the local region. Through mutant screening, we identified D10 and D12 as crucial residues for metal binding and maintaining structural stability via various uncharacterized intra-protein interactions, respectively. Substituting D10 with Ala effectively prevents the interaction with Mg2+ ions. The mutation of D12 disrupts important structural associations mediated by D12, leading to a decrease in the stability of Sav2152 and an enhancement in binding affinity to Mg2+ ions. Additionally, our study revealed that D237 can replace D12 and retain phosphatase activity. In summary, our work uncovers the novel role of metal ions in HAD-like phosphatase activity.


Asunto(s)
Proteínas Bacterianas , Hidrolasas , Magnesio , Monoéster Fosfórico Hidrolasas , Magnesio/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/genética , Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/genética , Modelos Moleculares , Staphylococcus aureus Resistente a Meticilina/enzimología , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus/enzimología , Cristalografía por Rayos X , Unión Proteica
2.
Proc Natl Acad Sci U S A ; 114(21): 5431-5436, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28396409

RESUMEN

The aryl hydrocarbon receptor (AHR) belongs to the PAS (PER-ARNT-SIM) family transcription factors and mediates broad responses to numerous environmental pollutants and cellular metabolites, modulating diverse biological processes from adaptive metabolism, acute toxicity, to normal physiology of vascular and immune systems. The AHR forms a transcriptionally active heterodimer with ARNT (AHR nuclear translocator), which recognizes the dioxin response element (DRE) in the promoter of downstream genes. We determined the crystal structure of the mammalian AHR-ARNT heterodimer in complex with the DRE, in which ARNT curls around AHR into a highly intertwined asymmetric architecture, with extensive heterodimerization interfaces and AHR interdomain interactions. Specific recognition of the DRE is determined locally by the DNA-binding residues, which discriminates it from the closely related hypoxia response element (HRE), and is globally affected by the dimerization interfaces and interdomain interactions. Changes at the interdomain interactions caused either AHR constitutive nuclear localization or failure to translocate to nucleus, underlying an allosteric structural pathway for mediating ligand-induced exposure of nuclear localization signal. These observations, together with the global higher flexibility of the AHR PAS-A and its loosely packed structural elements, suggest a dynamic structural hierarchy for complex scenarios of AHR activation induced by its diverse ligands.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Dimerización , Regulación de la Expresión Génica , Humanos , Ratones , Estructura Cuaternaria de Proteína
3.
J Biol Chem ; 293(6): 1994-2005, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279331

RESUMEN

Cellular metabolites act as important signaling cues, but are subject to complex unknown chemistry. Kynurenine is a tryptophan metabolite that plays a crucial role in cancer and the immune system. Despite its atypical, non-ligand-like, highly polar structure, kynurenine activates the aryl hydrocarbon receptor (AHR), a PER, ARNT, SIM (PAS) family transcription factor that responds to diverse environmental and cellular ligands. The activity of kynurenine is increased 100-1000-fold by incubation or long-term storage and relies on the hydrophobic ligand-binding pocket of AHR, with identical structural signatures for AHR induction before and after activation. We purified trace-active derivatives of kynurenine and identified two novel, closely related condensation products, named trace-extended aromatic condensation products (TEACOPs), which are active at low picomolar levels. The synthesized compound for one of the predicted structures matched the purified compound in both chemical structure and AHR pharmacology. Our study provides evidence that kynurenine acts as an AHR pro-ligand, which requires novel chemical conversions to act as a receptor agonist.


Asunto(s)
Quinurenina/química , Quinurenina/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Sitios de Unión , Cinética , Ligandos , Ratones , Estructura Molecular , Receptores de Hidrocarburo de Aril/química , Receptores de Hidrocarburo de Aril/genética
4.
Appl Microbiol Biotechnol ; 101(6): 2333-2342, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27915377

RESUMEN

Esterases comprise a group of enzymes that catalyze the cleavage and synthesis of ester bonds. They are important in biotechnological applications owing to their enantioselectivity, regioselectivity, broad substrate specificity, and the fact that they do not require cofactors. In a previous study, we isolated the esterase Est25 from a metagenomic library. Est25 showed catalytic activity toward the (R,S)-ketoprofen ethyl ester but had low enantioselectivity toward the (S)-ketoprofen ethyl ester. Because (S)-ketoprofen has stronger anti-inflammatory effects and fewer side effects than (R)-ketoprofen, enantioselectivity of this esterase is important. In this study, we generated Est25 mutants with improved enantioselectivity toward the (S)-ketoprofen ethyl ester; improved enantioselectivity of mutants was established by analysis of their crystal structures. The enantioselectivity of mutants was influenced by substitution of Phe72 and Leu255. Substituting these residues changed the size of the binding pocket and the entrance hole that leads to the active site. The enantioselectivity of Est25 (E = 1.1 ± 0.0) was improved in the mutants F72G (E = 1.9 ± 0.2), L255W (E = 16.1 ± 1.1), and F72G/L255W (E = 60.1 ± 0.5). Finally, characterization of Est25 mutants was performed by determining the optimum reaction conditions, thermostability, effect of additives, and substrate specificity after substituting Phe72 and Leu255.


Asunto(s)
Proteínas Bacterianas/química , Esterasas/química , Cetoprofeno/química , Metagenoma , Microbiología del Suelo , Antiinflamatorios no Esteroideos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Esterasas/genética , Esterasas/metabolismo , Ésteres , Expresión Génica , Biblioteca Genómica , Cetoprofeno/metabolismo , Cinética , Consorcios Microbianos/genética , Modelos Moleculares , Mutación , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidad por Sustrato
5.
Appl Microbiol Biotechnol ; 100(24): 10521-10529, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27470143

RESUMEN

Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.


Asunto(s)
Antineoplásicos/metabolismo , Cetuximab/metabolismo , Receptores ErbB/antagonistas & inhibidores , Escherichia coli/metabolismo , Fragmentos Fab de Inmunoglobulinas/metabolismo , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Antineoplásicos/química , Línea Celular Tumoral , Cetuximab/química , Cetuximab/genética , Cristalografía por Rayos X , Escherichia coli/genética , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/genética , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Ingeniería de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1726-42, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914983

RESUMEN

The prokaryotic global transcription factor CRP has been considered to be an ideal model for in-depth study of both the allostery of the protein and the differential utilization of the homologous cyclic nucleotide second messengers cAMP and cGMP. Here, atomic details from the crystal structures of two inactive CRP species, an apo form and a cGMP-bound form, in comparison with a known active conformation, the cAMP-CRP complex, provide macroscopic and microscopic insights into CRP allostery, which is coupled to specific discrimination between the two effectors. The cAMP-induced conformational transition, including dynamic fluctuations, can be driven by the fundamental folding forces that cause water-soluble globular proteins to construct an optimized hydrophobic core, including secondary-structure formation. The observed conformational asymmetries underlie a negative cooperativity in the sequential binding of cyclic nucleotides and a stepwise manner of binding with discrimination between the effector molecules. Additionally, the finding that cGMP, which is specifically recognized in a syn conformation, induces an inhibitory conformational change, rather than a null effect, on CRP supports the intriguing possibility that cGMP signalling could be widely utilized in prokaryotes, including in aggressive inhibition of CRP-like proteins.


Asunto(s)
Proteína C-Reactiva/química , Sistemas de Mensajero Secundario , Regulación Alostérica , Secuencia de Bases , AMP Cíclico/química , GMP Cíclico/química , Cartilla de ADN , Estructura Secundaria de Proteína
7.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 5): 105-110, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132476

RESUMEN

Endolysins produced by bacteriophages play essential roles in the release of phage progeny by degrading the peptidoglycan layers of the bacterial cell wall. Bacteriophage-encoded endolysins have emerged as a new class of antibacterial agents to combat surging antibiotic resistance. The crystal structure of mtEC340M, an engineered endolysin EC340 from the PBEC131 phage that infects Escherichia coli, was determined. The crystal structure of mtEC340M at 2.4 Šresolution consists of eight α-helices and two loops. The three active residues of mtEC340M were predicted by structural comparison with peptidoglycan-degrading lysozyme.


Asunto(s)
Bacteriófagos , Peptidoglicano , Cristalografía por Rayos X , Endopeptidasas , Bacteriófagos/química , Antibacterianos/química , Escherichia coli/genética
8.
Life (Basel) ; 11(9)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34575106

RESUMEN

Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.

9.
Life (Basel) ; 11(5)2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33922228

RESUMEN

Interactions involving Epstein-Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin-protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel ß-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third ß-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between ß1 and ß2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.

10.
Int J Biol Macromol ; 130: 99-108, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30797012

RESUMEN

In toxin-antitoxin systems, many antitoxin proteins that neutralize their cognate toxin proteins also bind to DNA to repress transcription, and the DNA-binding affinity of the antitoxin is affected by its toxin. We solved crystal structures of the antitoxin HigA (apo-SfHigA) and its complex with the toxin HigB (SfHigBA) from Shigella flexneri. The apo-SfHigA shows a distinctive V-shaped homodimeric conformation with sequestered N-domains having a novel fold. SfHigBA appears as a heterotetramer formed by N-terminal dimerization of SfHigB-bound SfHigA molecules. The conformational change in SfHigA upon SfHigB binding is mediated by rigid-body movements of its C-domains, which accompanied an overall conformational change from wide V-shaped to narrow V-shaped dimer. Consequently, the two putative DNA-binding helices (α7 in each subunit) are repositioned to a conformation more compatible with canonical homodimeric DNA-binding proteins containing HTH motifs. Collectively, this study demonstrates a conformational change in an antitoxin protein, which occurs upon toxin binding and is responsible for regulating antitoxin DNA binding.


Asunto(s)
Antitoxinas/química , Antitoxinas/metabolismo , Shigella flexneri , Toxinas Biológicas/metabolismo , Secuencia de Aminoácidos , ADN/metabolismo , Modelos Moleculares , Unión Proteica , Multimerización de Proteína , Estructura Cuaternaria de Proteína
11.
J Biochem Mol Biol ; 40(5): 839-43, 2007 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-17927920

RESUMEN

HP0495 (Swiss-Prot ID; Y495_HELPY) is an 86-residue hypothetical protein from Helicobacter pylori strain 26695. The function of HP0495 cannot be identified based on sequence homology, and HP0495 is included in a fairly unique sequence family. Here, we report the sequence-specific backbone resonance assignments of HP0495. About 97% of all the 1HN, 15N, 13Calpha, 13Cbeta, and 13CO resonances were assigned unambiguously. We could predict the secondary structure of HP0495, by analyzing the deviation of the 13Calpha and 13Cbeta shemical shifts from their respective random coil values. Secondary structure prediction shows that HP0495 consists of two alpha-helices and four beta-strands. This study is a prerequisite for determining the solution structure of HP0495 and investigating the protein-protein interaction between HP0495 and other Helicobacter pylori proteins.


Asunto(s)
Proteínas Bacterianas/química , Helicobacter pylori/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Secuencia de Aminoácidos , Isótopos de Carbono/química , Datos de Secuencia Molecular , Isótopos de Nitrógeno/química , Estructura Secundaria de Proteína , Protones
12.
FEBS Lett ; 591(21): 3692-3703, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28983914

RESUMEN

Shigella flexneri is a Gram-negative anaerobic bacterium that causes highly infectious bacterial dysentery in humans. Here, we solved the crystal structure of SF216, a hypothetical protein from the S. flexneri 5a strain M90T, at 1.7 Å resolution. The crystal structure of SF216 represents a homotrimer stabilized by intersubunit interactions and ion-mediated electrostatic interactions. Each subunit consists of three ß-strands and five α-helices with the ß-ß-ß-α-α-α-α-α topology. Based on the structural information, we also demonstrate that SF216 shows weak ribonuclease activity by a fluorescence quenching assay. Furthermore, we identify potential druggable pockets (putative hot spots) on the surface of the SF216 structure by computational mapping.


Asunto(s)
Proteínas Bacterianas/química , Shigella flexneri/química , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Shigella flexneri/genética , Electricidad Estática
13.
Nat Commun ; 7: 12882, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27708256

RESUMEN

Heat shock protein (Hsp)70 is a molecular chaperone that maintains protein homoeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. However, the mechanisms by which Hsp70 balances these opposing functions under stress conditions remain unknown. Here, we demonstrate that Hsp70 preferentially facilitates protein refolding after stress, gradually switching to protein degradation via a mechanism dependent on ARD1-mediated Hsp70 acetylation. During the early stress response, Hsp70 is immediately acetylated by ARD1 at K77, and the acetylated Hsp70 binds to the co-chaperone Hop to allow protein refolding. Thereafter, Hsp70 is deacetylated and binds to the ubiquitin ligase protein CHIP to complete protein degradation during later stages. This switch is required for the maintenance of protein homoeostasis and ultimately rescues cells from stress-induced cell death in vitro and in vivo. Therefore, ARD1-mediated Hsp70 acetylation is a regulatory mechanism that temporally balances protein refolding/degradation in response to stress.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Acetiltransferasa A N-Terminal/metabolismo , Acetiltransferasa E N-Terminal/metabolismo , Replegamiento Proteico , Acetilación , Animales , Apoptosis , Caspasas/metabolismo , Supervivencia Celular , Proteínas Fluorescentes Verdes/química , Células HEK293 , Humanos , Chaperonas Moleculares/química , Mutación , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , ARN Interferente Pequeño/metabolismo , Estrés Fisiológico , Pez Cebra
14.
Mol Immunol ; 65(2): 377-83, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25743157

RESUMEN

We determined the X-ray crystal structure of an immunoglobulin fragment crystallizable (Fc) heterodimer, EW-RVT, at a resolution of 2.5Å and found that the designed asymmetric interaction residues located in the heterodimeric CH3 interface favor Fc heterodimer formation. We further generated an inter-CH3 disulfide-bonded heterodimeric Fc variant, EW-RVT(S-S), which exhibited improved heterodimer formation and thermodynamic stability compared with the parent EW-RVT variant. The crystal structure of EW-RVTS-S superimposed very closely with the wild-type Fc structure. Our results provide the detailed structure of heterodimeric Fc scaffolds, which will be useful for the generation of immunoglobulin G (IgG)-like bispecific antibodies.


Asunto(s)
Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Multimerización de Proteína , Cristalografía por Rayos X , Humanos , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad
15.
Acta Crystallogr F Struct Biol Commun ; 71(Pt 1): 54-6, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25615969

RESUMEN

Shigella flexneri is a Gram-negative, anaerobic bacterium in the genus Shigella that can cause diarrhoea in humans. SF173, a hypothetical protein from S. flexneri 5a strain M90T, has been cloned, overexpressed, purified and crystallized as a part of laboratory-scale structural genomics project. The SF173 protein was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.8 M succinic acid pH 7.0 at 293 K. Preliminary X-ray diffraction analysis revealed that the crystal diffracted to 1.47 Šresolution and belonged to space group I432, with unit-cell parameters a=b=c=110.245 Å.


Asunto(s)
Proteínas Bacterianas/química , Shigella flexneri , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Escherichia coli , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA