Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurochem ; 165(6): 892-906, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37026518

RESUMEN

Functional MRI (fMRI) with 1 H-MRS was combined on the hippocampus and visual cortex of animal models of obesity (high-fat diet, HFD) and type 2 diabetes (T2D) to identify the involved mechanisms and temporal evolution of neurometabolic changes in these disorders that could serve as potentially reliable clinical biomarkers. HFD rats presented elevated levels of N-acetylaspartylglutamate (NAAG) (p = 0.0365 vs. standard diet, SD) and glutathione (GSH) (p = 0.0494 vs. SD) in the hippocampus. NAAG and GSH levels in this structure proved to be correlated (r = 0.4652, p = 0.0336). This mechanism was not observed in diabetic rats. Combining MRS and fMRI-evaluated blood-oxygen-level-dependent (BOLD) response, elevated taurine (p = 0.0326 vs. HFD) and GABA type A receptor (GABAA R) (p = 0.0211 vs. SD and p = 0.0153 vs. HFD) were observed in the visual cortex of only diabetic rats, counteracting the elevated BOLD response and suggesting an adaptative mechanism against hyperexcitability observed in the primary visual cortex (V1) (p = 0.0226 vs. SD). BOLD amplitude was correlated with the glutamate levels (r = 0.4491; p = 0.0316). Therefore, here we found evidence for several biological dichotomies regarding excitotoxicity and neuroprotection in different brain regions, identifying putative markers of their different susceptibility and response to the metabolic and vascular insults of obesity and diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Neuroquímica , Corteza Visual , Ratas , Animales , Neuroprotección , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Experimental/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Corteza Visual/diagnóstico por imagen , Corteza Visual/metabolismo , Ácido Glutámico/metabolismo , Modelos Animales , Obesidad/diagnóstico por imagen , Obesidad/metabolismo , Ácido gamma-Aminobutírico/metabolismo
2.
Small ; 18(49): e2203999, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316233

RESUMEN

Lung metastases represent the most adverse clinical factor and rank as the leading cause of osteosarcoma-related death. Nearly 80% of patients present lung micrometastasis at diagnosis not detected with current clinical tools. Herein, an exosome (EX)-based imaging tool is developed for lung micrometastasis by positron emission tomography (PET) using osteosarcoma-derived EXs as natural nanocarriers of the positron-emitter copper-64 (64 Cu). Exosomes are isolated from metastatic osteosarcoma cells and functionalized with the macrocyclic chelator NODAGA for complexation with 64 Cu. Surface functionalization has no effect on the physicochemical properties of EXs, or affinity for donor cells and endows them with favorable pharmacokinetics for in vivo studies. Whole-body PET/magnetic resonance imaging (MRI) images in xenografted models show a specific accumulation of 64 Cu-NODAGA-EXs in metastatic lesions as small as 2-3 mm or in a primary tumor, demonstrating the exquisite tropism of EXs for homotypic donor cells. The targetability for lung metastasis is also observed by optical imaging using indocyanine green (ICG)-labeled EXs and D-luciferin-loaded EXs. These findings show that tumor-derived EXs hold great potential as targeted imaging agents for the noninvasive detection of small lung metastasis by PET. This represents a step forward in the biomedical application of EXs in imaging diagnosis with increased translational potential.


Asunto(s)
Neoplasias Pulmonares , Tomografía de Emisión de Positrones , Humanos , Neoplasias Pulmonares/diagnóstico por imagen
3.
Hum Mol Genet ; 28(13): 2174-2188, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30816415

RESUMEN

The understanding of the natural history of Alzheimer's disease (AD) and temporal trajectories of in vivo molecular mechanisms requires longitudinal approaches. A behavioral and multimodal imaging study was performed at 4/8/12 and 16 months of age in a triple transgenic mouse model of AD (3xTg-AD). Behavioral assessment included the open field and novel object recognition tests. Molecular characterization evaluated hippocampal levels of amyloid ß (Aß) and hyperphosphorylated tau. Magnetic resonance imaging (MRI) included assessment of hippocampal structural integrity, blood-brain barrier (BBB) permeability and neurospectroscopy to determine levels of the endogenous neuroprotector taurine. Longitudinal brain amyloid accumulation was assessed using 11C Pittsburgh compound B positron emission tomography (PET), and neuroinflammation/microglia activation was investigated using 11C-PK1195. We found altered locomotor activity at months 4/8 and 16 months and recognition memory impairment at all time points. Substantial early reduction of hippocampal volume started at month 4 and progressed over 8/12 and 16 months. Hippocampal taurine levels were significantly decreased in the hippocampus at months 4/8 and 16. No differences were found for amyloid and neuroinflammation with PET, and BBB was disrupted only at month 16. In summary, 3xTg-AD mice showed exploratory and recognition memory impairments, early hippocampal structural loss, increased Aß and hyperphosphorylated tau and decreased levels of taurine. In sum, the 3xTg-AD animal model mimics pathological and neurobehavioral features of AD, with early-onset recognition memory loss and MRI-documented hippocampal damage. The early-onset profile suggests temporal windows and opportunities for therapeutic intervention, targeting endogenous neuroprotectors such as taurine.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Taurina/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Biomarcadores , Barrera Hematoencefálica/metabolismo , Modelos Animales de Enfermedad , Hipocampo/diagnóstico por imagen , Inflamación/genética , Inflamación/metabolismo , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/metabolismo , Imagen Molecular , Imagen Multimodal , Presenilina-1/genética , Proteínas tau/genética , Proteínas tau/metabolismo
4.
Hum Mol Genet ; 27(12): 2125-2137, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29668904

RESUMEN

Huntington's disease (HD) is a neurodegenerative disorder causing cognitive and motor impairments, evolving to death within 15-20 years after symptom onset. We previously established a mouse model with the entire human HD gene containing 128 CAG repeats (YAC128) which accurately recapitulates the natural history of the human disease. Defined time points in this natural history enable the understanding of longitudinal trajectories from the neurochemical and structural points of view using non-invasive high-resolution multi-modal imaging. Accordingly, we designed a longitudinal structural imaging (MRI and DTI) and spectroscopy (1H-MRS) study in YAC128, at 3, 6, 9 and 12 months of age, at 9.4 T. Structural analysis (MRI/DTI), confirmed that the striatum is the earliest affected brain region, but other regions were also identified through connectivity analysis (pre-frontal cortex, hippocampus, globus pallidus and thalamus), suggesting a striking homology with the human disease. Importantly, we found for the first time, a negative correlation between striatal and hippocampal changes only in YAC128. In fact, the striatum showed accelerated volumetric decay in HD, as opposed to the hippocampus. Neurochemical analysis of the HD striatum suggested early neurometabolic alterations in neurotransmission and metabolism, with a significant increase in striatal GABA levels, and specifically anticorrelated levels of N-acetyl aspartate and taurine, suggesting that the later is homeostatically adjusted for neuroprotection, as neural loss, indicated by the former, is progressing. These results provide novel insights into the natural history of HD and prove a valuable role for longitudinal multi-modal panels of structural and metabolite/neurotransmission in the YAC128 model.


Asunto(s)
Encéfalo/metabolismo , Cuerpo Estriado/metabolismo , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Humanos , Enfermedad de Huntington/diagnóstico por imagen , Enfermedad de Huntington/patología , Estudios Longitudinales , Ratones , Ratones Transgénicos , Neostriado/diagnóstico por imagen , Neostriado/metabolismo , Neostriado/patología , Neuronas/metabolismo , Neuronas/patología , Tálamo/diagnóstico por imagen , Tálamo/metabolismo , Tálamo/patología , Repeticiones de Trinucleótidos/genética , Ácido gamma-Aminobutírico/genética , Ácido gamma-Aminobutírico/metabolismo
5.
Eur J Neurosci ; 52(1): 2771-2780, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32168385

RESUMEN

Previous studies about the modulation of the vasculature by CO were performed exclusively in male or sexually immature animals. Understanding the sex differences regarding systemic drug processing and pharmacodynamics is an important feature for safety assessment of drug dosing and efficacy. In this work, we used CORM-A1 as source of CO to examine the effects of this gasotransmitter on brain perfusion and the sex-dependent differences. Dynamic contrast-enhanced imaging (DCE)-based analysis was used to characterize the properties of CO in the modulation of cerebral vasculature in vivo, in adult C57BL/6 healthy mice. Perfusion of the temporal muscle, maxillary vein and in hippocampus, cortex and striatum was analysed for 108 min following CORM-A1 administration of 3 or 5 mg/kg. Under control conditions, brain perfusion was lower in females when compared with males. Under CO treatment, females showed a surprisingly overall reduced perfusion compared with controls (F = 3.452, p = .0004), while no major alterations (or even the expected increase) were observed in males. Cortical structures were only modulated in females. A striking female-dominated vasoconstriction effect was observed in the hippocampus and striatum following administration of CO, in this mixed-sex cohort. As these two regions are implicated in episodic and procedural memory formation, CO may have a relevant impact in learning and memory.


Asunto(s)
Monóxido de Carbono , Caracteres Sexuales , Animales , Femenino , Hipocampo , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL
6.
Inorg Chem ; 58(24): 16618-16628, 2019 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-31802655

RESUMEN

Superparamagnetic maghemite core-porous silica shell nanoparticles, γ-Fe2O3@SiO2 (FS), with 50 nm diameter and a 10 nm core, impregnated with paramagnetic complexes b-Ln ([Ln(btfa)3(H2O)2]) (where btfa = 4,4,4-trifluoro-l-phenyl-1,3-butanedione and Ln = Gd, Eu, and Gd/Eu), performing as promising trimodal T1-T2 MRI and optical imaging contrast agents, are reported. These nanosystems exhibit a high dispersion stability in water and no observable cytotoxic effects, witnessed by intracellular ATP levels. The structure and superparamagnetic properties of the maghemite core nanocrystals are preserved upon imbedding the b-Ln complexes in the shell. Hela cells efficiently and swiftly internalize the NPs into the cytosol, with no observable cytotoxicity below a concentration of 62.5 µg mL-1. These nanosystems perform better than the free b-Gd complex as T1 (positive) contrast agents in cellular pellets, while their performance as T2 (negative) contrast agents is similar to the FS. Embedding of the b-Eu complex in the silica pores endows the nanoparticles with strong luminescence properties. The impregnation of gadolinium and europium complexes in a 1:1 ratio afforded a trimodal nanoplatform performing as a luminescent probe and a double T1 and T2 MRI contrast agent even more efficient than b-Gd used on its own, as observed in cell-labeled imaging experiments and MRI cell pellets.

7.
J Nat Prod ; 82(12): 3394-3400, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31751133

RESUMEN

The exceptional case of a natural compound that shows drastic absolute configuration variations within the same species was examined. Sequential samples of areolal (1) isolated from Piptothrix areolare showed dextrorotatory (ee 32%), almost racemic (ee 4%), levorotatory (ee 82%), and again dextrorotatory (ee 10%) values. Enantiomeric compositions of this epoxythymol derivative were determined from individual plant specimens collected from the same geographical location over a 46-day period, which were processed using the same extraction and isolation methods. Detection of this unusual phenomenon was possible by analysis of NMR data recorded in the presence of BINOL as a chiral solvating agent. The absolute configuration of (-)-(8S)-areolal followed from vibrational circular dichroism data of an enantiomerically enriched sample, while single-crystal X-ray diffraction and supramolecular analyses revealed interactions that diminish the crystal entropy in rac-1. These results might be related with environmental factors and biochemical processes, suggesting the need of strict evaluations of enantiomeric composition of natural products that could be considered for human applications.


Asunto(s)
Asteraceae/química , Productos Biológicos/farmacología , Productos Biológicos/química , Dicroismo Circular , Cristalografía por Rayos X , Estructura Molecular , Análisis Espectral/métodos , Estereoisomerismo
8.
Mol Ther ; 26(9): 2131-2151, 2018 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-30087083

RESUMEN

Machado-Joseph disease (MJD) or spinocerebellar ataxia type 3, the most common dominant spinocerebellar ataxia (SCA) worldwide, is caused by over-repetition of a CAG repeat in the ATXN3/MJD1 gene, which translates into a polyglutamine tract within the ataxin-3 protein. There is no treatment for this fatal disorder. Despite evidence of the safety and efficacy of mesenchymal stromal cells (MSCs) in delaying SCA disease progression in exploratory clinical trials, unanticipated regression of patients to the status prior to treatment makes the investigation of causes and solutions urgent and imperative. In the present study, we compared the efficacy of a single intracranial injection with repeated systemic MSC administration in alleviating the MJD phenotype of two strongly severe genetic rodent models. We found that a single MSC transplantation only produces transient effects, whereas periodic administration promotes sustained motor behavior and neuropathology alleviation, suggesting that MSC therapies should be re-designed to get sustained beneficial results in clinical practice. Furthermore, MSC promoted neuroprotection, increased the levels of GABA and glutamate, and decreased the levels of Myo-inositol, which correlated with motor improvements, indicating that these metabolites may serve as valid neurospectroscopic biomarkers of disease and treatment. This study makes important contributions to the design of new clinical approaches for MJD and other SCAs/polyglutamine disorders.


Asunto(s)
Ataxina-3/metabolismo , Enfermedad de Machado-Joseph/metabolismo , Enfermedad de Machado-Joseph/terapia , Animales , Ataxina-3/genética , Ácido Glutámico/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
9.
J Magn Reson Imaging ; 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29377412

RESUMEN

BACKGROUND: Type-2 diabetes mellitus (T2DM) is a metabolic disorder with a broad range of complications in the brain that depend on the conditions that precede its onset, such as obesity and metabolic syndromes. It has been suggested that neurotransmitter and metabolic perturbations may emerge even before the early stages of T2DM and that high-caloric intake could adversely influence the brain in such states. Notwithstanding, evidence for neurochemical and structural alterations in these conditions are still sparse and controversial. PURPOSE: To evaluate the influence of high-fat diet in the neurochemical profile and structural integrity of the rodent brain. STUDY TYPE: Prospective. SUBJECTS: Wistar rats (n = 12/group). FIELD STRENGTH/SEQUENCE: A PRESS, ISIS, RARE, and EPI sequences were performed at 9.4T. ASSESSMENT: Neurochemical and structural parameters were assessed by magnetic resonance spectroscopy, voxel-based morphometry, volumetry, and diffusion tensor imaging. STATISTICAL TESTS: Measurements were compared through Student and Mann-Whitney tests. Pearson correlation was used to assess relationships between parameters. RESULTS: Animals submitted to high-caloric intake gained weight (P = 0.003) and developed glucose intolerance (P < 0.001) but not hyperglycemia. In the hippocampus, the diet induced perturbations in glutamatergic metabolites reflected by increased levels of glutamine (P = 0.016) and glutamatergic pool (Glx) (P = 0.036), which were negatively correlated with glucose intolerance (glutamine, r = -0.804, P = 0.029), suggesting a link with neurometabolic dysregulation. At caudate-putamen, high-fat diet led to a surprising increase in the pool of N-acetylaspartate (P = 0.028). A relation with metabolic changes was again suggested by the negative correlation between glucose intolerance and levels of glutamatergic metabolites in this region (glutamate, r = -0.845, P = 0.014; Glx, r = -0.834, P = 0.020). Neither changes in phosphate compounds nor major structural alterations were observed for both regions. DATA CONCLUSION: We found evidence that high-fat diet-induced obesity leads to distinct early and region-specific metabolic/neurochemical imbalances in the presence of early glucose intolerance even when structural alterations or T2DM are absent. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018.

10.
Int J Mol Sci ; 15(5): 8979-97, 2014 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-24853130

RESUMEN

Cyclosporin A (CsA), a calcineurin inhibitor, remain the cornerstone of immunosuppressive regimens, regardless of nephrotoxicity, which depends on the duration of drug exposure. The mechanisms and biomarkers underlying the transition from CsA-induced renal dysfunction to nephrotoxicity deserve better elucidation, and would help clinical decisions. This study aimed to clarify these issues, using a rat model of short- and long-term CsA (5 mg/kg bw/day) treatments (3 and 9 weeks, respectively). Renal function was assessed on serum and urine; kidney tissue was used for histopathological characterization and gene and/or protein expression of markers of proliferation, fibrosis and inflammation. In the short-term, creatinine and blood urea nitrogen (BUN) levels increased and clearances decreased, accompanied by glomerular filtration rate (GFR) reduction, but without kidney lesions; at that stage, CsA exposure induced proliferating cell nuclear antigen (PCNA), transforming growth factor beta 1 (TGF-ß1), factor nuclear kappa B (NF-κß) and Tumor Protein P53 (TP53) kidney mRNA up-regulation. In the long-term treatment, renal dysfunction data was accompanied by glomerular and tubulointerstitial lesions, with remarkable kidney mRNA up-regulation of the mammalian target of rapamycin (mTOR) and the antigen identified by monoclonal antibody Ki-67 (Mki67), accompanied by mTOR protein overexpression. Transition from CsA-induced renal dysfunction to nephrotoxicity is accompanied by modification of molecular mechanisms and biomarkers, being mTOR one of the key players for kidney lesion evolution, thus suggesting, by mean of molecular evidences, that early CsA replacement by mTOR inhibitors is indeed the better therapeutic choice to prevent chronic allograft nephropathy.


Asunto(s)
Ciclosporina/toxicidad , Inmunosupresores/toxicidad , Enfermedades Renales/etiología , Riñón/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Ciclosporina/efectos adversos , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inmunosupresores/efectos adversos , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
11.
Ageing Res Rev ; 99: 102395, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950867

RESUMEN

The blood brain barrier (BBB) is an indispensable structure that maintains the central nervous system (CNS) microenvironment for a correct neuronal function. It is composed by highly specialized microvessels, surrounded by astrocytes, pericytes, neurons and microglia cells, which tightly control the influx and efflux of substances to the brain parenchyma. During aging, the BBB becomes impaired, and it may contribute to the development of neurodegenerative and neurological disorders including Alzheimer's disease and other dementias. Restoring the BBB can be a strategy to prevent disease onset and development, reducing the symptoms of these conditions. This work critically reviews the major mechanisms underlying BBB breakdown in healthy and unhealthy aging, as well as biomarkers and methodologies that accurately assess its impairment. Complementarily, potential therapeutic targets are discussed as new strategies to restore the normal function of the BBB in aging.


Asunto(s)
Barrera Hematoencefálica , Demencia , Envejecimiento Saludable , Humanos , Barrera Hematoencefálica/metabolismo , Demencia/fisiopatología , Demencia/metabolismo , Envejecimiento Saludable/fisiología , Animales , Envejecimiento/fisiología
12.
Brain Commun ; 6(5): fcae281, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39229487

RESUMEN

Addiction to psychoactive substances is a maladaptive learned behaviour. Contexts surrounding drug use integrate this aberrant mnemonic process and hold strong relapse-triggering ability. Here, we asked where context and salience might be concurrently represented in the brain during retrieval of drug-context paired associations. For this, we developed a morphine-conditioned place preference protocol that allows contextual stimuli presentation inside a magnetic resonance imaging scanner and investigated differences in activity and connectivity at context recall. We found context-specific responses to stimulus onset in multiple brain regions, namely, limbic, sensory and striatal. Differences in functional interconnectivity were found among amygdala, lateral habenula, and lateral septum. We also investigated alterations to resting-state functional connectivity and found increased centrality of the lateral septum in a proposed limbic network, as well as increased functional connectivity of the lateral habenula and hippocampal 'cornu ammonis' 1 region, after a protocol of associative drug-context. Finally, we found that pre- conditioned place preference resting-state connectivity of the lateral habenula and amygdala was predictive of inter-individual conditioned place preference score differences. Overall, our findings show that drug and saline-paired contexts establish distinct memory traces in overlapping functional brain microcircuits and that intrinsic connectivity of the habenula, septum, and amygdala likely underlies the individual maladaptive contextual learning to opioid exposure. We have identified functional maps of acquisition and retrieval of drug-related memory that may support the relapse-triggering ability of opioid-associated sensory and contextual cues. These findings may clarify the inter-individual sensitivity and vulnerability seen in addiction to opioids found in humans.

13.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38675435

RESUMEN

Neuropeptide Y (NPY) is one of the most abundant peptides in the central nervous system of mammals and is involved in several physiological processes through NPY Y1, Y2, Y4 and Y5 receptors. Of those, the Y2 receptor has particular relevance for its autoreceptor role in inhibiting the release of NPY and other neurotransmitters and for its involvement in relevant mechanisms such as feeding behaviour, cognitive processes, emotion regulation, circadian rhythms and disorders such as epilepsy and cancer. PET imaging of the Y2 receptor can provide a valuable platform to understand this receptor's functional role and evaluate its potential as a therapeutic target. In this work, we set out to refine the chemical and radiochemical synthesis of the Y2 receptor antagonist N-[11C]Me-JNJ31020028 for in vivo PET imaging studies. The non-radioactive reference compound, N-Me-JNJ-31020028, was synthesised through batch synthesis and continuous flow methodology, with 43% and 92% yields, respectively. N-[11C]Me-JNJ-31020028 was obtained with a radiochemical purity > 99%, RCY of 31% and molar activity of 156 GBq/µmol. PET imaging clearly showed the tracer's biodistribution in several areas of the mouse brain and gut where Y2 receptors are known to be expressed.

14.
Neuro Oncol ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39210244

RESUMEN

BACKGROUND: Brain metastasis (BrM) is a devastating end-stage neurological complication that occurs in up to 50% of HER2+ breast cancer patients. Understanding how disseminating tumor cells manage to cross the blood-brain barrier (BBB) is essential for developing effective preventive strategies. We identified the ecto-nucleotidase ENPP1 as specifically enriched in the secretome of HER2+ brain metastatic cells, prompting us to explore its impact on BBB dysfunction and BrM formation. METHODS: We used in vitro BBB and in vivo premetastatic mouse models to evaluate the effect of tumor-secreted ENPP1 on brain vascular permeability. BBB integrity was analyzed by real-time fluorescence imaging of 20 kDa Cy7.5-dextran extravasation and immunofluorescence staining of adherens and tight junction proteins. Pro-metastatic effects of ENPP1 were evaluated in an experimental brain metastatic model. RESULTS: Systemically secreted ENPP1 from primary breast tumors impaired the integrity of BBB with loss of tight and adherens junction proteins early before the onset of BrM. Mechanistically, ENPP1 induced endothelial cell dysfunction by impairing insulin signaling and its downstream AKT/GSK3ß/ß-catenin pathway. Genetic ablation of ENPP1 from HER2+ brain metastatic cells prevented endothelial cell dysfunction and reduced metastatic burden while prolonging the overall and metastasis-free survival of mice. Furthermore, plasmatic ENPP1 levels correlate with brain metastatic burden and inversely with overall survival. CONCLUSIONS: We demonstrated that metastatic breast cancer cells exploit the ENPP1 signaling for cell transmigration across the BBB and brain colonization. Our data implicate ENPP1 as a potential biomarker for poor prognosis and early detection of BrM in HER2+ breast cancer.

15.
Cardiovasc Diabetol ; 12: 61, 2013 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-23570342

RESUMEN

BACKGROUND: The aim of this study is to evaluate the effect of gender and menopause in cardiometabolic risk in a type 2 diabetes mellitus (T2DM) population, based on classical and non-traditional markers. METHODS: Seventy four volunteers and 110 T2DM patients were enrolled in the study. Anthropometric data, blood pressure, body mass index (BMI), waist circumference (WC) and the following serum markers were analyzed: glucose, Total-c, TGs, LDL-c, Oxidized-LDL, total HDL-c and large and small HDL-c subpopulations, paraoxonase 1 activity, hsCRP, uric acid, TNF-α, adiponectin and VEGF. RESULTS: Non-diabetic women, compared to men, presented lower glycemia, WC, small HDL-c, uric acid, TNF-α and increased large HDL-c. Diabetes abrogates the protective effect of female gender, since diabetic women showed increased BMI, WC, small HDL-c, VEGF, uric acid, TNF-α and hsCRP, as well as reduced adiponectin, when compared with non-diabetic. In diabetic females, but not in males, WC is directly and significantly associated with TNF-α, VEGF, hsCRP and uric acid; TNF-α is directly associated with VEGF and hsCRP, and inversely with adiponectin. Postmenopausal females presented a worsen cardiometabolic profile, viewed by the increased WC, small HDL-c, VEGF, uric acid, TNF-α and hsCRP. In this population, WC is directly and significantly associated with TNF-α, VEGF, hsCRP; TNF-α is directly associated with VEGF; and uric acid is inversely associated with large HDL-c and hsCRP with adiponectin, also inversely. CONCLUSIONS: Diabetes abrogates the protective effect of gender on non-diabetic women, and postmenopausal diabetic females presented worsen cardiometabolic risk, including a more atherogenic lipid sketch and a pro-inflammatory and pro-angiogenic profile. The classical cardiovascular risk factors (CVRFs) fail to completely explain these differences, which are better clarified using "non-traditional" factors, such as HDL-c subpopulations, rather than total HDL-c content, and markers of inflammation and angiogenesis, namely TNF-α, hsCRP, uric acid and VEGF. Multi-therapeutic intervention, directed to obesity, atherogenic lipid particles and inflammatory mediators is advisory in order to efficiently prevent the serious diabetic cardiovascular complications.


Asunto(s)
Índice de Masa Corporal , Enfermedades Cardiovasculares/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Posmenopausia/fisiología , Caracteres Sexuales , Glucemia/metabolismo , Enfermedades Cardiovasculares/epidemiología , Diabetes Mellitus Tipo 2/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Circunferencia de la Cintura/fisiología
16.
Mediators Inflamm ; 2013: 612038, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24282340

RESUMEN

To evaluate the impact of low levels of high density lipoprotein cholesterol (HDL-c) on patients with LDL-c average levels, focusing on oxidative, lipidic, and inflammatory profiles. Patients with cardiovascular risk factors (n = 169) and control subjects (n = 73) were divided into 2 subgroups, one of normal HDL-c and the other of low HDL-c levels. The following data was analyzed: BP, BMI, waist circumference and serum glucose Total-c, TGs, LDL-c, oxidized LDL, total HDL-c and subpopulations (small, intermediate, and large), paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF- α , adiponectin, VEGF, and iCAM1. In the control subgroup with low HDL-c levels, significantly higher values of BP and TGs and lower values of PON1 activity and adiponectin were found, versus control normal HDL-c subgroup. However, differences in patients' subgroups were clearly more pronounced. Indeed, low HDL-c subgroup presented increased HbA1c, TGs, non-HDL-c, Ox-LDL, hsCRP, VEGF, and small HDL-c and reduced adiponectin and large HDL. In addition, Ox-LDL, large-HDL-c, and adiponectin presented interesting correlations with classical and nonclassical markers, mainly in the normal HDL-c patients' subgroup. In conclusion, despite LDL-c average levels, low HDL-c concentrations seem to be associated with a poor cardiometabolic profile in a population with cardiovascular risk factors, which is better evidenced by traditional and nontraditional CV biomarkers, including Ox-LDL, large HDL-c, and adiponectin.


Asunto(s)
Adiponectina/metabolismo , HDL-Colesterol/sangre , Regulación de la Expresión Génica , Lipoproteínas LDL/sangre , Adulto , Anciano , Arildialquilfosfatasa/metabolismo , Biomarcadores/metabolismo , Glucemia/análisis , Presión Sanguínea , Índice de Masa Corporal , Proteína C-Reactiva/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Metabolismo de los Lípidos , Masculino , Persona de Mediana Edad , Oxígeno/metabolismo , Factores de Riesgo , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Úrico/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Circunferencia de la Cintura
17.
ScientificWorldJournal ; 2013: 387849, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24319364

RESUMEN

This study intended to determine the impact of HDL-c and/or TGs levels on patients with average LDL-c concentration, focusing on lipidic, oxidative, inflammatory, and angiogenic profiles. Patients with cardiovascular risk factors (n = 169) were divided into 4 subgroups, combining normal and low HDL-c with normal and high TGs patients. The following data was analyzed: BP, BMI, waist circumference and serum glucose, Total-c, TGs, LDL-c, oxidized-LDL, total HDL-c and HDL subpopulations, paraoxonase-1 (PON1) activity, hsCRP, uric acid, TNF- α , adiponectin, VEGF, and iCAM1. The two populations with increased TGs levels, regardless of the normal or low HDL-c, presented obesity and higher waist circumference, Total-c, LDL-c, Ox-LDL, and uric acid. Adiponectin concentration was significantly lower and VEGF was higher in the population with cumulative low values of HDL-c and high values of TGs, while HDL quality was reduced in the populations with impaired values of HDL-c and/or TGs, viewed by reduced large and increased small HDL subfractions. In conclusion, in a population with cardiovascular risk factors, low HDL-c and/or high TGs concentrations seem to be associated with a poor cardiometabolic profile, despite average LDL-c levels. This condition, often called residual risk, is better evidenced by using both traditional and nontraditional CV biomarkers, including large and small HDL subfractions, Ox-LDL, adiponectin, VEGF, and uric acid.


Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/diagnóstico , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Técnicas de Diagnóstico Cardiovascular , Triglicéridos/sangre , Arildialquilfosfatasa/metabolismo , Glucemia , Presión Sanguínea , Índice de Masa Corporal , Femenino , Humanos , Masculino , Portugal , Factores de Riesgo , Espectrofotometría , Estadísticas no Paramétricas , Circunferencia de la Cintura
18.
Biol Sex Differ ; 14(1): 24, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101298

RESUMEN

BACKGROUND: Neurofibromatosis type 1 (NF1) is an inherited neurocutaneous disorder associated with neurodevelopmental disorders including autism spectrum disorder (ASD). This condition has been associated with an increase of gamma-aminobutyric acid (GABA) neurotransmission and, consequently, an excitation/inhibition imbalance associated with autistic-like behavior in both human and animal models. Here, we explored the influence of biological sex in the GABAergic system and behavioral alterations induced by the Nf1+/- mutation in a murine model. METHODS: Juvenile male and female Nf1+/- mice and their wild-type (WT) littermates were used. Hippocampus size was assessed by conventional toluidine blue staining and structural magnetic resonance imaging (MRI). Hippocampal GABA and glutamate levels were determined by magnetic resonance spectroscopy (MRS), which was complemented by western blot for the GABA(A) receptor. Behavioral evaluation of on anxiety, memory, social communication, and repetitive behavior was performed. RESULTS: We found that juvenile female Nf1+/- mice exhibited increased hippocampal GABA levels. Moreover, mutant female displays a more prominent anxious-like behavior together with better memory performance and social behavior. On the other hand, juvenile Nf1+/- male mice showed increased hippocampal volume and thickness, with a decrease in GABA(A) receptor levels. We observed that mutant males had higher tendency for repetitive behavior. CONCLUSIONS: Our results suggested a sexually dimorphic impact of Nf1+/- mutation in hippocampal neurochemistry, and autistic-like behaviors. For the first time, we identified a "camouflaging"-type behavior in females of an animal model of ASD, which masked their autistic traits. Accordingly, like observed in human disorder, in this animal model of ASD, females show larger anxiety levels but better executive functions and production of normative social patterns, together with an imbalance of inhibition/excitation ratio. Contrary, males have more externalizing disorders, such as hyperactivity and repetitive behaviors, with memory deficits. The ability of females to camouflage their autistic traits creates a phenotypic evaluation challenge that mimics the diagnosis difficulty observed in humans. Thus, we propose the study of the Nf1+/- mouse model to better understand the sexual dimorphisms of ASD phenotypes and to create better diagnostic tools.


Asunto(s)
Trastorno del Espectro Autista , Neurofibromatosis 1 , Animales , Femenino , Humanos , Masculino , Ratones , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/diagnóstico , Ácido gamma-Aminobutírico , Neurofibromatosis 1/genética , Neurofibromatosis 1/complicaciones , Receptores de GABA-A , Caracteres Sexuales , Neurofibromina 1/genética , Neurofibromina 1/metabolismo
19.
Mar Drugs ; 10(12): 2661-75, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23342389

RESUMEN

Urinary bladder cancer is one of the most common cancers worldwide, with the highest incidence in industrialized countries. Patients with cancer commonly use unconventional and complementary therapy including nutraceuticals. In this study we evaluated the efficacy of chitooligosaccharides (in orange juice) in rat bladder cancer chemoprevention and as therapeutic agent, on a rat model of urinary bladder carcinogenesis induced with N-butyl-N-(4-hydroxybutyl) nitrosamine. Results indicate that chitooligosaccharides may have a preventive effect on bladder cancer development and a curative effect upon established bladder tumors, dependent on the concentration ingested 500 mg/kg b.w., every three days, showed capacity to inhibit and prevent the proliferation of bladder cancer; however, this was associated with secondary effects such as hypercholesterolemia and hypertriglyceridemia. The use of lower doses (50 and 250 mg/kg b.w.) showed only therapeutic effects. It is further suggested that this antitumor effect might be due to its expected anti-inflammatory action, as well as by mechanisms not directly dependent of COX-2 inhibition, such as cellular proliferation control and improvement in antioxidant profile.


Asunto(s)
Anticarcinógenos/farmacología , Citrus sinensis/química , Oligosacáridos/farmacología , Neoplasias de la Vejiga Urinaria/prevención & control , Animales , Antiinflamatorios/administración & dosificación , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Anticarcinógenos/administración & dosificación , Anticarcinógenos/aislamiento & purificación , Bebidas , Butilhidroxibutilnitrosamina/toxicidad , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Masculino , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Oligosacáridos/administración & dosificación , Oligosacáridos/aislamiento & purificación , Ratas , Ratas Wistar , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología
20.
Int J Mol Sci ; 13(7): 8482-8499, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22942715

RESUMEN

To investigate the anti-carcinogenic effects of Atorvastatin (Atorva) on a rat bladder carcinogenesis model with N-butyl-N-(4-hydroxibutil)nitrosamine (BBN), four male Wistar rat groups were studied: (1) CONTROL: vehicle; (2) Atorva: 3 mg/kg bw/day; (3) Carcinogen: BBN (0.05%); (4) Preventive Atorva: 3 mg/kg bw/day Atorva + BBN. A two phase protocol was used, in which the drug and the carcinogen were given between week 1 and 8 and tumor development or chemoprevention were expressed between week 9 and 20, when the bladders were collected for macroscopic, histological and immunohistochemical (p53, ki67, CD31) evaluation. Serum was assessed for markers of inflammation, proliferation and redox status. The incidence of bladder carcinoma was: control 0/8 (0%); Atorva 0/8 (0%); BBN 13/20 (65%) and Atorva + BBN 1/8 (12.5%). The number and volume of tumors were significantly lower in the Atorva + BBN group, with a marked reduction in hyperplasia, dysplasia and carcinoma in situ lesions. An anti-proliferative, anti-inflammatory and antioxidant profile was also observed in the preventive Atorva group. p53 and ki67 immunostaining were significantly increased in the BBN-treated rats, which was prevented in the Atorva + BBN group. No differences were found for CD31 expression. In conclusion, Atorvastatin had a clear inhibitory effect on bladder cancer development, probably due to its antioxidant, anti-proliferative and anti-inflammatory properties.


Asunto(s)
Antiinflamatorios/uso terapéutico , Anticarcinógenos/uso terapéutico , Antioxidantes/uso terapéutico , Ácidos Heptanoicos/uso terapéutico , Pirroles/uso terapéutico , Neoplasias de la Vejiga Urinaria/prevención & control , Animales , Antiinflamatorios/farmacología , Anticarcinógenos/farmacología , Antioxidantes/farmacología , Atorvastatina , Biomarcadores de Tumor/sangre , Butilhidroxibutilnitrosamina , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Ácidos Heptanoicos/farmacología , Masculino , Estrés Oxidativo , Pirroles/farmacología , Ratas Wistar , Vejiga Urinaria/efectos de los fármacos , Vejiga Urinaria/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/inducido químicamente , Neoplasias de la Vejiga Urinaria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA