Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 29(7): 1074-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19407246

RESUMEN

OBJECTIVE: Fibronectin is an important regulator of cell migration, differentiation, growth, and survival. Our data show that fibronectin also plays an important role in regulating extracellular matrix (ECM) remodeling. Fibronectin circulates in the plasma and is also deposited into the ECM by a cell dependent process. To determine whether fibronectin affects vascular remodeling in vivo, we asked whether the fibronectin polymerization inhibitor, pUR4, inhibits intima-media thickening, and prevents excess ECM deposition in arteries using a mouse model of vascular remodeling. METHODS AND RESULTS: To induce vascular remodeling, partial ligation of the left external and internal carotid arteries was performed in mice. pUR4 and the control peptide were applied periadventitially in pluronic gel immediately after surgery. Animals were euthanized 7 or 14 days after surgery. Morphometric analysis demonstrated that the pUR4 fibronectin inhibitor reduced carotid intima (63%), media (27%), and adventitial thickening (40%) compared to the control peptide (III-11C). Treatment with pUR4 also resulted in a dramatic decrease in leukocyte infiltration into the vessel wall (80%), decreased ICAM-1 and VCAM-1 levels, inhibited cell proliferation (60% to 70%), and reduced fibronectin and collagen I accumulation in the vessel wall. In addition, the fibronectin inhibitor prevented SMC phenotypic modulation, as evidenced by the maintenance of smooth muscle (SM) alpha-actin and SM myosin heavy chain levels in medial cells. CONCLUSIONS: These data are the first to demonstrate that fibronectin plays an important role in regulating the vascular remodeling response. Collectively, these data suggest a therapeutic benefit of periadventitial pUR4 in reducing pathological vascular remodeling.


Asunto(s)
Estenosis Carotídea/fisiopatología , Fibronectinas/fisiología , Túnica Íntima/fisiopatología , Animales , Arteria Carótida Común , Fibronectinas/antagonistas & inhibidores , Hemorreología/fisiología , Ratones , Miocitos del Músculo Liso , Túnica Íntima/lesiones , Túnica Media/fisiopatología
2.
Invest Ophthalmol Vis Sci ; 45(9): 2893-905, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15326100

RESUMEN

PURPOSE: Juvenile neuronal ceroid lipofuscinosis (JNCL or Batten Disease) is one of the most common progressive neurodegenerative disorders of childhood, resulting from autosomal recessive inheritance of mutations in the CLN3 gene. Pathologically, Batten disease is characterized by lysosomal storage of autofluorescent material in all tissue types. Although characterized by seizures, mental retardation, and loss of motor skills, the first presenting symptom of Batten disease is vision loss. METHODS: High-density oligonucleotide arrays were used to profile approximately 19,000 mRNAs in the eye of 10-week-old Cln3-knockout and normal mice, and the data were compared with that for the cerebellum in the same model as a means to identify gene expression changes that are specific to the eye. RESULTS: A detailed list was compiled of 285 functionally categorized genes that have altered expression in the eye of Cln3-knockout mice before the appearance of the characteristic lysosomal storage material. Furthermore, 18 genes were identified and 6 validated by semiquantitative RT-PCR that have altered expression in the eye, but not in the cerebellum of Cln3-knockout mice. The genes that have altered expression specific to the eye of the Cln3-knockout mouse may be of importance in understanding the function of CLN3 in different tissues. CONCLUSIONS: Downregulation of genes associated with energy production in the mitochondria appears to be specific to the eye. The CLN3 defect may result in altered mitochondrial function in eye but not other tissue. More detailed experimentation is needed to understand the contribution of these changes in expression to disease state, and whether these changes are specific for certain cell types within the eye.


Asunto(s)
Ojo/metabolismo , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Lipofuscinosis Ceroideas Neuronales/metabolismo , Animales , Cerebelo/metabolismo , Modelos Animales de Enfermedad , Fluorescencia , Expresión Génica , Perfilación de la Expresión Génica , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos , Ratones Noqueados , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
3.
Epilepsia ; 43(10): 1137-40, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12366726

RESUMEN

PURPOSE: Juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, is a pediatric neurodegenerative disease characterized by vision loss, seizure activity, cognitive decline, and premature death. Discovery of the Batten disease-related gene, CLN3, led to creation of a Cln3 protein-deficient mouse model (Cln3-/-), which recapitulates some of the histopathologic characteristics of the human condition. We hypothesized that lack of Cln3 would alter seizure-related behavioral parameters. METHODS: Using flurothyl gas inhalation, we examined seizure-induction latencies in Cln3-/- mice and wildtype (wt) controls at time points that represent late neonatal, immature, mature, and aged time points. We examined latency to first myoclonic jerk (LMJ), latency to loss of posture (LOP), and subsequent mortality. RESULTS: Our results demonstrate an age-dependent alteration of seizure-induction latencies in Cln3-/-. Immature Cln-/- mice aged 35-42 days had an increased latency to both LMJ and LOP compared with age-matched wt controls. There were no significant latency differences between Cln3-/- and wt at other time points examined. Mortality after generalized seizure was high in both Cln3-/- and wt animals at late neonatal and immature developmental stages. No mortality was seen in wt mice past maturity at 6 weeks. Mature and aged Cln3-/- animals retained a vulnerability to death after seizure activity. CONCLUSIONS: These results suggest that a deficiency of Cln3 protein in the Batten model mice may result in age-dependent alteration of the neuroanatomic and biochemical substrates involved in seizure propagation and recovery. This may be important in understanding seizures, neurodegeneration, and premature death in human Batten disease.


Asunto(s)
Flurotilo/administración & dosificación , Glicoproteínas de Membrana , Chaperonas Moleculares , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/fisiopatología , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Administración por Inhalación , Factores de Edad , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Mutantes Neurológicos , Lipofuscinosis Ceroideas Neuronales/mortalidad , Fenotipo , Proteínas/genética , Convulsiones/mortalidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA