Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Br J Cancer ; 130(8): 1402-1413, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467828

RESUMEN

BACKGROUND: Primary resistance to anti-EGFR therapies affects 40% of metastatic colorectal cancer patients harbouring wild-type RAS/RAF. YAP1 activation is associated with this resistance, prompting an investigation into AURKA's role in mediating YAP1 phosphorylation at Ser397, as observed in breast cancer. METHODS: We used transcriptomic analysis along with in vitro and in vivo models of RAS/RAF wild-type CRC to study YAP1 Ser397 phosphorylation as a potential biomarker for cetuximab resistance. We assessed cetuximab efficacy using CCK8 proliferation assays and cell cycle analysis. Additionally, we examined the effects of AURKA inhibition with alisertib and created a dominant-negative YAP1 Ser397 mutant to assess its impact on cancer stem cell features. RESULTS: The RAS/RAF wild-type CRC models exhibiting primary resistance to cetuximab prominently displayed elevated YAP1 phosphorylation at Ser397 primarily mediated by AURKA. AURKA-induced YAP1 phosphorylation was identified as a key trigger for cancer stem cell reprogramming. Consequently, we found that AURKA inhibition had the capacity to effectively restore cetuximab sensitivity and concurrently suppress the cancer stem cell phenotype. CONCLUSIONS: AURKA inhibition holds promise as a therapeutic approach to overcome cetuximab resistance in RAS/RAF wild-type colorectal cancer, offering a potential means to counter the development of cancer stem cell phenotypes associated with cetuximab resistance.


Asunto(s)
Aurora Quinasa A , Neoplasias Colorrectales , Humanos , Cetuximab/farmacología , Cetuximab/metabolismo , Aurora Quinasa A/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
J Thromb Thrombolysis ; 55(3): 464-473, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36630029

RESUMEN

The issue of how to identify newly diagnosed multiple myeloma (NDMM) patients requiring thromboprophylaxis remains unsolved. Several changes in thrombin generation (TG)-derived parameters have been described in multiple myeloma (MM) patients recently. Assessment of prothrombotic risk with a fully automated TG analyzer could reduce interlaboratory variability. Our objective was to determine whether ST-Genesia® could reveal a hypercoagulable state in NDMM compared to healthy controls. We conducted a multicenter observational study of NDMM requiring initial treatment to compare TG parameters obtained with ST-Genesia® analyzer and ST-ThromboScreen® reagent with a control group. Clinical data were obtained from medical records and blood samples were collected before initial anti-myeloma therapy. A thrombophilia panel was performed in all patients. Compared to age- and sex-matched controls (n = 83), NDMM patients (n = 83) had significantly higher peak height, higher velocity index, shorter time-to-peak and lower percentage of endogenous thrombin potential (ETP) inhibition after adding thrombomodulin (TM) (ETP%inh). NDMM on prophylactic low molecular weight heparin (LMWH) showed reduced both peak height and velocity index compared to NDMM who had not yet started VTE prophylaxis, similar to that of controls. Moreover, partial correction of ETP%inh was observed in MM patients on LMWH. The presence of a thrombophilia did not modify the TG phenotype. Untreated NDMM patients showed an enhanced TG, regardless of their thrombophilia status. They generate a higher peak of thrombin, take less time to produce it, and exhibit resistance to TM inhibition. Our findings suggest that standard prophylactic dose of LMWH may reduce TG at levels of healthy controls.


Asunto(s)
Mieloma Múltiple , Trombofilia , Tromboembolia Venosa , Humanos , Trombina , Mieloma Múltiple/tratamiento farmacológico , Anticoagulantes/uso terapéutico , Heparina de Bajo-Peso-Molecular/uso terapéutico , Tromboembolia Venosa/tratamiento farmacológico , Trombofilia/diagnóstico , Trombofilia/etiología , Trombofilia/tratamiento farmacológico , Pruebas de Coagulación Sanguínea
3.
Br J Haematol ; 198(3): 545-555, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639095

RESUMEN

Until now, the role that seasonal factors play in the aetiology of acute myeloid leukaemia (AML) has been unclear. Demonstration of seasonality in AML diagnosis would provide supportive evidence of an underlying seasonal aetiology. To investigate the potential seasonal and long-term trends in AML diagnosis in an overall population and in subgroups according to sex and age, we used population-based data from a Spanish hospital discharge registry. We conducted a larger study than any to date of 26 472 cases of AML diagnosed in Spain between 2004 and 2015. Using multivariable Poisson generalized linear autoregressive moving average modelling, we found an upward long-term trend, with monthly incidence rates of AML annually increasing by 0.4% [95% confidence interval (CI), 0.2%-0.6%; p = 0.0011]. January displayed the highest incidence rate of AML, with a minimum average difference of 7% when compared to February (95% CI, 2%-12%; p = 0.0143) and a maximum average difference of 16% compared to November (95% CI, 11%-21%; p < 0.0001) and August (95% CI, 10%-21%; p < 0.0001). Such seasonal effect was consistent among subgroups according to sex and age. Our finding that AML diagnosis is seasonal strongly implies that seasonal factors, such as infectious agents or environmental triggers, influence the development and/or proliferation of disease, pointing to prevention opportunities.


Asunto(s)
Leucemia Mieloide Aguda , Humanos , Incidencia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/epidemiología , Sistema de Registros , Investigación , Estaciones del Año
5.
Haematologica ; 98(12): 1877-85, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23812937

RESUMEN

Survivin is over-expressed in most hematologic malignancies but the prognostic significance of the subcompartmental distribution of wild-type or splicing variants in acute myeloid leukemia has not been addressed yet. Using western blotting, we assessed the expression of wild-type survivin and survivin splice variants 2B and Delta-Ex3 in nuclear and cytoplasmic protein extracts in samples taken from 105 patients at the time of their diagnosis of acute myeloid leukemia. Given that survivin is a downstream effector of the PI3K/Akt signaling pathway, survivin expression was also correlated with pSer473-Akt. Wild-type survivin and the 2B splice variant were positive in 76.3% and 78.0% of samples in the nucleus, cytoplasm or both, whereas the Delta-Ex3 isoform was only positive in the nucleus in 37.7% of samples. Cytoplasmic localization of wild-type survivin was significantly associated with the presence of high levels of pSer473-Akt (P<0.001). Inhibition of the PI3K/Akt pathway with wortmannin and Ly294002 caused a significant reduction in the expression of cytoplasmic wild-type survivin. The presence of cytoplasmic wild-type survivin and pSer473-Akt was associated with a lower fraction of quiescent leukemia stem cells (P=0.02). The presence of cytoplasmic wild-type survivin and pSer473-Akt were favorable independent prognostic factors. Moreover, the activation of the PI3K/Akt pathway with expression of cytoplasmic wild-type survivin identified a subgroup of acute myeloid leukemia patients with an excellent outcome (overall survival rate of 60.0±21.9% and relapse-free survival of 63.0±13.5%). Our findings suggest that cytoplasmic wild-type survivin is a critical downstream effector of the PI3K/Akt pathway leading to more chemosensitive cells and a more favorable outcome in acute myeloid leukemia.


Asunto(s)
Citoplasma/metabolismo , Proteínas Inhibidoras de la Apoptosis/biosíntesis , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Citoplasma/química , Femenino , Estudios de Seguimiento , Células HL-60 , Humanos , Proteínas Inhibidoras de la Apoptosis/análisis , Células K562 , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Pronóstico , Transducción de Señal/fisiología , Tasa de Supervivencia/tendencias , Survivin , Adulto Joven
7.
Expert Rev Hematol ; 16(4): 277-287, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951195

RESUMEN

INTRODUCTION: Acute myeloid leukemia (AML) is a heterogeneous disease currently including 12 entities defined by genetic findings with remarkable differences in prognosis and targeted therapies availability. Therefore, identification of genetic abnormalities by efficient techniques has become a necessary tool in routine clinical practice for AML patients. AREAS COVERED: In the present review, we will focus on our current knowledge of relevant prognosis gene mutations in AML, as recently updated by European Leukemia Net Leukemia risk classification. EXPERT OPINION: About 25% of newly diagnosed younger AML patients will be promptly classified as favorable prognosis by demonstrating the presence of NPM1 mutations or CBF rearrangements by qRTPCR, allowing for implementing molecular measurable residual disease-guided chemotherapy-based protocols. In fit AML patients, rapid detection of FLT3ITD is mandatory to associate midostaurin or quizartinib to treatment and assignment to intermediate prognosis. Conventional cytogenetics and FISH still have a role for detection adverse prognosis karyotypes and KMT2A, MECOM, or NUP98 gene rearrangements. Further genetic characterization is performed with NGS panels including favorable prognosis gene CEBPA bZIP and adverse prognosis genes, such as TP53 and myelodysplasia associated genes.


Asunto(s)
Leucemia Mieloide Aguda , Nucleofosmina , Humanos , Pronóstico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Mutación , Protocolos de Quimioterapia Combinada Antineoplásica , Tirosina Quinasa 3 Similar a fms/genética
8.
J Colloid Interface Sci ; 650(Pt A): 560-572, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429163

RESUMEN

Despite the large number of synthesis methodologies described for superparamagnetic iron oxide nanoparticles (SPIONs), the search for their large-scale production for their widespread use in biomedical applications remains a mayor challenge. Flame Spray Pyrolysis (FSP) could be the solution to solve this limitation, since it allows the fabrication of metal oxide nanoparticles with high production yield and low manufacture costs. However, to our knowledge, to date such fabrication method has not been upgraded for biomedical purposes. Herein, SPIONs have been fabricated by FSP and their surface has been treated to be subsequently coated with dimercaptosuccinic acid (DMSA) to enhance their colloidal stability in aqueous media. The final material presents high quality in terms of nanoparticle size, homogeneous size distribution, long-term colloidal stability and magnetic properties. A thorough in vitro validation has been performed with peripheral blood cells and mesenchymal stem cells (hBM-MSCs). Specifically, hemocompatibility studies show that these functionalized FSP-SPIONs-DMSA nanoparticles do not cause platelet aggregation or impair basal monocyte function. Moreover, in vitro biocompatibility assays show a dose-dependent cellular uptake while maintaining high cell viability values and cell cycle progression without causing cellular oxidative stress. Taken together, the results suggest that the FSP-SPIONs-DMSA optimized in this work could be a worthy alternative with the benefit of a large-scale production aimed at industrialization for biomedical applications.


Asunto(s)
Nanopartículas de Magnetita , Pirólisis , Nanopartículas Magnéticas de Óxido de Hierro , Estrés Oxidativo , Succímero
9.
Cancers (Basel) ; 15(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36900222

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous disease classified into three risk categories (favorable, intermediate and adverse) with significant differences in outcomes. Definitions of risk categories evolve overtime, incorporating advances in molecular knowledge of AML. In this study, we analyzed the impacts of evolving risk classifications in 130 consecutive AML patients in a single-center real-life experience. Complete cytogenetic and molecular data were collected using conventional qPCR and targeted Next Generation Sequencing (NGS). Five-year OS probabilities were consistent among all classification models (roughly 50-72%, 26-32% and 16-20% for favorable, intermediate and adverse risk groups, respectively). In the same way, the medians of survival months and prediction power were similar in all models. In each update, around 20% of patients were re-classified. The adverse category consistently increased over time (31% in MRC, 34% in ELN2010, 50% in ELN2017), reaching up to 56% in the recent ELN2022. Noteworthily, in multivariate models, only age and the presence of TP53 mutations remained statistically significant. With updates in risk-classification models, the percentage of patients assigned to the adverse group is increasing, and so will the indications for allogeneic stem cell transplantation.

10.
Cancers (Basel) ; 14(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35326610

RESUMEN

The Notch signaling pathway is fundamental to early fetal development, but its role in acute myeloid leukemia is still unclear. It is important to elucidate the function that contains Notch, not only in acute myeloid leukemia, but in leukemic stem cells (LSCs). LSCs seem to be the principal cause of patient relapse. This population is in a quiescent state. Signaling pathways that govern this process must be understood to increase the chemosensitivity of this compartment. In this review, we focus on the conserved Notch signaling pathway, and its repercussions in hematopoiesis and hematological neoplasia. We found in the literature both visions regarding Notch activity in acute myeloid leukemia. On one hand, the activation of Notch leads to cell proliferation, on the other hand, the activation of Notch leads to cell cycle arrest. This dilemma requires further experiments to be answered, in order to understand the role of Notch not only in acute myeloid leukemia, but especially in LSCs.

11.
EJHaem ; 3(3): 722-733, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36051055

RESUMEN

Diffuse large B-cell lymphoma (DLBCL), the most frequent non-Hodgkin's lymphoma subtype, is characterized by strong biological, morphological, and clinical heterogeneity, but patients are treated with immunochemotherapy in a relatively homogeneous way. Here, we have used a customized NanoString platform to analyze a series of 197 homogeneously treated DLBCL cases. The platform includes the most relevant genes or signatures known to be useful for predicting response to R-CHOP (Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, and Prednisone) in DLBCL cases. We generated a risk score that combines the International Prognostic Index with cell of origin and double expression of MYC/BCL2, and stratified the series into three groups, yielding hazard ratios from 0.15 to 5.49 for overall survival, and from 0.17 to 5.04 for progression-free survival. Group differences were highly significant (p < 0.0001), and the scoring system was applicable to younger patients (<60 years of age) and patients with advanced or localized stages of the disease. Results were validated in an independent dataset from 166 DLBCL patients treated in two distinct clinical trials. This risk score combines clinical and biological data in a model that can be used to integrate biological variables into the prognostic models for DLBCL cases.

12.
Dis Markers ; 2022: 3132941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051360

RESUMEN

Gemtuzumab ozogamicin (GO) is a conjugate of a monoclonal antibody and calicheamicin, which has been reapproved for the treatment of acute myeloid leukemia (AML). AML patients with the CD33 rs12459419 CC genotype might benefit from the addition of GO to intensive treatment in contrast to patients with CT/TT genotypes. Nevertheless, contradictory results have been reported. We sought to shed light on the prediction of GO response in AML patients with rs12459419 polymorphism who were treated with GO in the consolidation (n = 70) or reinduction (n = 20) phase. The frequency distribution of the rs12459419 polymorphism in the complete cohort of patients was 44.4% (n = 40), 50% (n = 45), and 5.6% (n = 5) for CC, CT, and TT genotypes, respectively. Regarding the patients treated with GO for consolidation, we performed a Kaplan-Meier analysis of overall survival and relapse-free survival according to the rs12459419 polymorphism (CC vs. CT/TT patients) and genetic risk using the European Leukemia Net (ELN) 2010 risk score. We also carried out a Cox regression analysis for the prediction of overall survival, with age and ELN 2010 as covariates. We found no statistical significance in the univariate or multivariate analysis. Additionally, we performed a global Kaplan-Meier analysis for the patients treated with GO for reinduction and did not find significant differences; however, our cohort was too small to draw any conclusion from this analysis. The use of GO in consolidation treatment is included in the approval of the compound; however, evidence regarding its efficacy in this setting is lacking. Rs12459419 polymorphism could help in the selection of patients who might benefit from GO. Regrettably, in our cohort, the rs12459419 polymorphism does not seem to be an adequate tool for the selection of patients who might benefit from the addition of GO in consolidation cycles.


Asunto(s)
Aminoglicósidos , Leucemia Mieloide Aguda , Lectina 3 Similar a Ig de Unión al Ácido Siálico , Aminoglicósidos/uso terapéutico , Anticuerpos Monoclonales Humanizados/genética , Gemtuzumab/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Polimorfismo de Nucleótido Simple , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética
13.
Leuk Lymphoma ; 63(8): 1861-1870, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35379068

RESUMEN

Activated B-cell (ABC) lymphoma, a distinct molecular entity within diffuse large B-cell lymphoma (DLBCL), remains highly incurable, showing a worse response to standard immunochemotherapy. The discouraging results obtained in several clinical trials using proteasome inhibitors, tyrosine kinase inhibitors, or immunomodulators, lead to an intense search for new, potentially druggable biomarkers in DLBCL. In this study, we designed an experimental strategy for DLBCL to discover high- and low-abundance RNA-seq-derived transcripts involved in the oncogenic phenotype in patients diagnosed with ABC-DLBCL. Based on the results of a comparative analysis, 79 DE genes and two enriched gene sets related to metabolism and immunity were selected. Genes related to drug resistance, anti-inflammatory response, and tumor-cell dissemination were found to be up-regulated, while tumor suppressor genes were down-regulated. Then, we searched for the perturbagens most suitable for gene expression profiling (GEP) by iLINCS-CMap. Herein, we present a novel experimental approach that connects the omics signature of DLBCL with potential drugs for more accurate treatments.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Oncogenes , Transcriptoma
14.
Transfusion ; 51(7): 1546-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21303373

RESUMEN

BACKGROUND: Dendritic cell (DC)-based immunotherapeutic protocols are being developed to treat acute myeloid leukemia (AML). So far, DCs for clinical use are obtained from leukemic blasts or from monocytes, after 6 to 10 days of ex vivo culture. However, DC precursors are easily driven to DCs in short-term culture. We tested if DC precursors contained in peripheral blood stem cell (PBSC) products obtained from AML patients can be used to induce antileukemia responses. STUDY DESIGN AND METHODS: PBSCs obtained from 30 consecutive AML patients were tested. Myeloid DCs (MDCs) were purified by immunomagnetic selection and screened for cytogenetic and/or molecular abnormalities by fluorescence in situ hybridization (FISH) or polymerase chain reaction (PCR) assays. MDCs were matured and pulsed with autologous blast lysates and tested for stimulatory capability against AML cells. RESULTS: A median of 0.62 × 10(6) MDCs (range, 0.04-3.25)/mL were quantified in PBSC products. Isolated MDC expressed Class I and II HLA but CD86, CD54, and CCR5 partially. By FISH or PCR assay, these MDCs lacked cytogenetic or molecular abnormalities detected in leukemia cells at diagnosis. MDCs achieved a maturated stage (mature-MDCs) after 24-hour ex vivo culture with tumor necrosis factor-α and autologous blast lysates. These mature-MDCs were capable of stimulating autologous peripheral blood effectors to exert cytotoxicity against autologous leukemia cells and HL-60 cell line. CONCLUSION: We conclude that PBSCs obtained for autologous stem cell transplantation can constitute a novel source of MDCs to design feasible vaccination trials.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/trasplante , Efecto Injerto vs Leucemia/inmunología , Leucemia Mieloide Aguda/terapia , Técnicas de Cultivo de Célula , Estudios de Factibilidad , Humanos , Separación Inmunomagnética , Inmunoterapia , Leucemia Mieloide Aguda/inmunología , Trasplante de Células Madre de Sangre Periférica , Factores de Tiempo , Trasplante Autólogo , Células Tumorales Cultivadas
15.
Cells ; 10(10)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34685542

RESUMEN

Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.


Asunto(s)
Inmunidad/inmunología , Inflamación/inmunología , Neoplasias/prevención & control , Neoplasias/terapia , Anciano , Humanos , Neoplasias/inmunología
16.
Biology (Basel) ; 10(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33804919

RESUMEN

A better understanding of how signaling pathways govern cell fate is fundamental to advances in cancer development and treatment. The initialization of different tumors and their maintenance are caused by the deregulation of different signaling pathways and cancer stem cell maintenance. Quiescent stem cells are resistant to conventional chemotherapeutic treatments and, consequently, are responsible for disease relapse. In this review we focus on the conserved Hedgehog (Hh) signaling pathway which is involved in regulating the cell cycle of hematopoietic and leukemic stem cells. Thus, we examine the role of the Hh signaling pathway in normal and leukemic stem cells and dissect its role in acute myeloid leukemia. We explain not only the connection between illness and the signaling pathway but also evaluate innovative therapeutic approaches that could affect the outcome of patients with acute myeloid leukemia. We found that many aspects of the Hedgehog signaling pathway remain unknown. The role of Hh has only been proven in embryo and hematopoietic stem cell development. Further research is needed to elucidate the role of GLI transcription factors for therapeutic targeting. Glasdegib, an SMO inhibitor, has shown clinical activity in acute myeloid leukemia; however, its mechanism of action is not clear.

17.
Materials (Basel) ; 14(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34500986

RESUMEN

Millions of patients suffer yearly from bone fractures and disorders such as osteoporosis or cancer, which constitute the most common causes of severe long-term pain and physical disabilities. The intrinsic capacity of bone to repair the damaged bone allows normal healing of most small bone injuries. However, larger bone defects or more complex diseases require additional stimulation to fully heal. In this context, the traditional routes to address bone disorders present several associated drawbacks concerning their efficacy and cost-effectiveness. Thus, alternative therapies become necessary to overcome these limitations. In recent decades, bone tissue engineering has emerged as a promising interdisciplinary strategy to mimic environments specifically designed to facilitate bone tissue regeneration. Approaches developed to date aim at three essential factors: osteoconductive scaffolds, osteoinduction through growth factors, and cells with osteogenic capability. This review addresses the biological basis of bone and its remodeling process, providing an overview of the bone tissue engineering strategies developed to date and describing the mechanisms that underlie cell-biomaterial interactions.

18.
Elife ; 102021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33830019

RESUMEN

Innate immune cellular effectors are actively consumed during systemic inflammation, but the systemic traffic and the mechanisms that support their replenishment remain unknown. Here, we demonstrate that acute systemic inflammation induces the emergent activation of a previously unrecognized system of rapid migration of granulocyte-macrophage progenitors and committed macrophage-dendritic progenitors, but not other progenitors or stem cells, from bone marrow (BM) to regional lymphatic capillaries. The progenitor traffic to the systemic lymphatic circulation is mediated by Ccl19/Ccr7 and is NF-κB independent, Traf6/IκB-kinase/SNAP23 activation dependent, and is responsible for the secretion of pre-stored Ccl19 by a subpopulation of CD205+/CD172a+ conventional dendritic cells type 2 and upregulation of BM myeloid progenitor Ccr7 signaling. Mature myeloid Traf6 signaling is anti-inflammatory and necessary for lymph node myeloid cell development. This report unveils the existence and the mechanistic basis of a very early direct traffic of myeloid progenitors from BM to lymphatics during inflammation.


When the body becomes infected with disease-causing pathogens, such as bacteria, the immune system activates various mechanisms which help to fight off the infection. One of the immune system's first lines of defense is to launch an inflammatory response that helps remove the pathogen and recruit other immune cells. However, this response can become overactivated, leading to severe inflammatory conditions that damage healthy cells and tissues. A second group of cells counteract this over inflammation and are different to the ones involved in the early inflammatory response. Both types of cells ­ inflammatory and anti-inflammatory ­ develop from committed progenitors, which, unlike stem cells, are already destined to become a certain type of cell. These committed progenitors reside in the bone marrow and then rapidly travel to secondary lymphoid organs, such as the lymph nodes, where they mature into functioning immune cells. During this journey, committed progenitors pass from the bone marrow to the lymphatic vessels that connect up the different secondary lymphoid organs, and then spread to all tissues in the body. Yet, it is not fully understood what exact route these cells take and what guides them towards these lymphatic tissues during inflammation. To investigate this, Serrano-Lopez, Hegde et al. used a combination of techniques to examine the migration of progenitor cells in mice that had been treated with lethal doses of a bacterial product that triggers inflammation. This revealed that as early as one to three hours after the onset of infection, progenitor cells were already starting to travel from the bone marrow towards lymphatic vessels. Serrano-Lopez, Hegde et al. found that a chemical released by an "alarm" immune cell already residing in secondary lymphoid organs attracted these progenitor cells towards the lymphatic tissue. Further experiments showed that the progenitor cells travelling to secondary lymphoid organs were already activated by bacterial products. They then follow the chemical released by alarm immune cells ready to respond to the immune challenge and suppress inflammation. These committed progenitors were also found in the inflamed lymph nodes of patients. These findings suggest this rapid circulation of progenitors is a mechanism of defense that contributes to the fight against severe inflammation. Altering how these cells migrate from the bone marrow to secondary lymphoid organs could provide a more effective treatment for inflammatory conditions and severe infections. However, these approaches would need to be tested further in the laboratory and in clinical trials.


Asunto(s)
Médula Ósea/metabolismo , Movimiento Celular , Células Progenitoras de Granulocitos y Macrófagos/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Linfadenopatía/metabolismo , Sistema Linfático/metabolismo , Células Progenitoras Mieloides/metabolismo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Médula Ósea/inmunología , Médula Ósea/patología , Linaje de la Célula , Células Cultivadas , Niño , Preescolar , Modelos Animales de Enfermedad , Femenino , Células Progenitoras de Granulocitos y Macrófagos/inmunología , Células Progenitoras de Granulocitos y Macrófagos/patología , Humanos , Inflamación/inmunología , Inflamación/patología , Linfadenopatía/inmunología , Linfadenopatía/patología , Sistema Linfático/inmunología , Sistema Linfático/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Células Progenitoras Mieloides/inmunología , Células Progenitoras Mieloides/patología , Fenotipo , Transducción de Señal , Factores de Tiempo , Adulto Joven
19.
PLoS One ; 16(3): e0247676, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33661939

RESUMEN

We retrospectively evaluated 2879 hospitalized COVID-19 patients from four hospitals to evaluate the ability of demographic data, medical history, and on-admission laboratory parameters to predict in-hospital mortality. Association of previously published risk factors (age, gender, arterial hypertension, diabetes mellitus, smoking habit, obesity, renal failure, cardiovascular/ pulmonary diseases, serum ferritin, lymphocyte count, APTT, PT, fibrinogen, D-dimer, and platelet count) with death was tested by a multivariate logistic regression, and a predictive model was created, with further validation in an independent sample. A total of 2070 hospitalized COVID-19 patients were finally included in the multivariable analysis. Age 61-70 years (p<0.001; OR: 7.69; 95%CI: 2.93 to 20.14), age 71-80 years (p<0.001; OR: 14.99; 95%CI: 5.88 to 38.22), age >80 years (p<0.001; OR: 36.78; 95%CI: 14.42 to 93.85), male gender (p<0.001; OR: 1.84; 95%CI: 1.31 to 2.58), D-dimer levels >2 ULN (p = 0.003; OR: 1.79; 95%CI: 1.22 to 2.62), and prolonged PT (p<0.001; OR: 2.18; 95%CI: 1.49 to 3.18) were independently associated with increased in-hospital mortality. A predictive model performed with these parameters showed an AUC of 0.81 in the development cohort (n = 1270) [sensitivity of 95.83%, specificity of 41.46%, negative predictive value of 98.01%, and positive predictive value of 24.85%]. These results were then validated in an independent data sample (n = 800). Our predictive model of in-hospital mortality of COVID-19 patients has been developed, calibrated and validated. The model (MRS-COVID) included age, male gender, and on-admission coagulopathy markers as positively correlated factors with fatal outcome.


Asunto(s)
COVID-19/mortalidad , Anciano , Anciano de 80 o más Años , Coagulación Sanguínea , COVID-19/sangre , COVID-19/diagnóstico , Femenino , Productos de Degradación de Fibrina-Fibrinógeno/análisis , Mortalidad Hospitalaria , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , SARS-CoV-2/aislamiento & purificación
20.
J Gastroenterol Hepatol ; 25(12): 1869-75, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21091999

RESUMEN

BACKGROUND AND AIM: In human blood, two main subsets of antigen-presenting-cells (APCs) have been described: plasmocytoid dendritic cells (pDC) and myeloid dendritic cells (mDC) which are further subdivided in CD11c-mDC and CD16-mDC DC. In ulcerative colitis patients (UC) peripheral blood APCs express significant levels of the activation and lack immature-tolerogeneic APCs. Adacolumn selective granulocytapheresis (GCAP) has been associated with clinical efficacy in patients with UC. In the present study we sought the effect of sequential GCAP procedures in peripheral blood APCs in patients with UC and the effect on soluble cytokines. METHODS: We used multiparametric flow cytometry to quantify peripheral blood APCs and serum cytokines in 210 samples obtained from seven patients with steroid-dependent or steroid resistant UC undergoing GCAP treatment. Samples were drawn before, after 30 and 60 min of each session. RESULTS: Each GCAP session resulted in a dramatic tenfold reduction of peripheral blood CD16-mDC (P < 0.01), pDC decreased twofold (P = 0.05) but CD11c-mDC remained unchanged. This depletion was reached after 30 min and maintained at 60 min. The depletion of CD16-mDC and monocytes was associated with a reduction of serum tumor necrosis factor levels and a raise in interleukin-10 levels, although no statistical difference was reached. CONCLUSION: The effect of GCAP in peripheral blood APC consisted mainly on a significant depletion of tumor necrosis factor-α secreting CD16-mDC. This finding could suggest a potential mechanism of GCAP beneficial effect that must be confirmed in larger series.


Asunto(s)
Colitis Ulcerosa/terapia , Células Dendríticas/inmunología , Granulocitos/inmunología , Mediadores de Inflamación/metabolismo , Leucaféresis , Receptores de IgG/sangre , Factor de Necrosis Tumoral alfa/sangre , Adolescente , Adulto , Anciano , Antígeno CD11c/sangre , Estudios de Casos y Controles , Colitis Ulcerosa/inmunología , Femenino , Citometría de Flujo , Proteínas Ligadas a GPI/sangre , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Proyectos Piloto , España , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA