RESUMEN
Glioblastoma multiforme (GBM) is an aggressive brain tumor for which current immunotherapy approaches have been unsuccessful. Here, we explore the mechanisms underlying immune evasion in GBM. By serially transplanting GBM stem cells (GSCs) into immunocompetent hosts, we uncover an acquired capability of GSCs to escape immune clearance by establishing an enhanced immunosuppressive tumor microenvironment. Mechanistically, this is not elicited via genetic selection of tumor subclones, but through an epigenetic immunoediting process wherein stable transcriptional and epigenetic changes in GSCs are enforced following immune attack. These changes launch a myeloid-affiliated transcriptional program, which leads to increased recruitment of tumor-associated macrophages. Furthermore, we identify similar epigenetic and transcriptional signatures in human mesenchymal subtype GSCs. We conclude that epigenetic immunoediting may drive an acquired immune evasion program in the most aggressive mesenchymal GBM subtype by reshaping the tumor immune microenvironment.
Asunto(s)
Neoplasias Encefálicas/inmunología , Epigénesis Genética , Glioblastoma/inmunología , Evasión Inmune/inmunología , Células Mieloides/inmunología , Células Madre Neoplásicas/inmunología , Microambiente Tumoral/inmunología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular , Metilación de ADN , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Células Mieloides/metabolismo , Células Mieloides/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Focal adhesion kinase (FAK) promotes anti-tumor immune evasion. Specifically, the kinase activity of nuclear-targeted FAK in squamous cell carcinoma (SCC) cells drives exhaustion of CD8(+) T cells and recruitment of regulatory T cells (Tregs) in the tumor microenvironment by regulating chemokine/cytokine and ligand-receptor networks, including via transcription of Ccl5, which is crucial. These changes inhibit antigen-primed cytotoxic CD8(+) T cell activity, permitting growth of FAK-expressing tumors. Mechanistically, nuclear FAK is associated with chromatin and exists in complex with transcription factors and their upstream regulators that control Ccl5 expression. Furthermore, FAK's immuno-modulatory nuclear activities may be specific to cancerous squamous epithelial cells, as normal keratinocytes do not have nuclear FAK. Finally, we show that a small-molecule FAK kinase inhibitor, VS-4718, which is currently in clinical development, also drives depletion of Tregs and promotes a CD8(+) T cell-mediated anti-tumor response. Therefore, FAK inhibitors may trigger immune-mediated tumor regression, providing previously unrecognized therapeutic opportunities.
Asunto(s)
Carcinoma de Células Escamosas/inmunología , Quimiocina CCL5/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Cutáneas/inmunología , Linfocitos T Reguladores/inmunología , Escape del Tumor , Aminopiridinas/administración & dosificación , Animales , Carcinoma de Células Escamosas/metabolismo , Quimiocina CCL5/inmunología , Modelos Animales de Enfermedad , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Humanos , Queratinocitos/metabolismo , Ratones , Ratones Desnudos , Neoplasias Cutáneas/metabolismo , Transcripción GenéticaRESUMEN
Precise vascular patterning is crucial for normal growth and development. The ERG transcription factor drives Delta-like ligand 4 (DLL4)/Notch signalling and is thought to act as a pivotal regulator of endothelial cell (EC) dynamics and developmental angiogenesis. However, molecular regulation of ERG activity remains obscure. Using a series of EC-specific focal adhesion kinase (FAK)-knockout (KO) and point-mutant FAK-knock-in mice, we show that loss of ECFAK, its kinase activity or phosphorylation at FAK-Y397, but not FAK-Y861, reduces ERG and DLL4 expression levels together with concomitant aberrations in vascular patterning. Rapid immunoprecipitation mass spectrometry of endogenous proteins identified that endothelial nuclear-FAK interacts with the deubiquitinase USP9x and the ubiquitin ligase TRIM25. Further in silico analysis confirms that ERG interacts with USP9x and TRIM25. Moreover, ERG levels are reduced in FAKKO ECs via a ubiquitin-mediated post-translational modification programme involving USP9x and TRIM25. Re-expression of ERG in vivo and in vitro rescues the aberrant vessel-sprouting defects observed in the absence of ECFAK. Our findings identify ECFAK as a regulator of retinal vascular patterning by controlling ERG protein degradation via TRIM25/USP9x.
Asunto(s)
Células Endoteliales , Factores de Transcripción , Animales , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Ratones , Neovascularización Fisiológica/genética , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismoRESUMEN
OBJECTIVE: Immunotherapy for the treatment of pancreatic ductal adenocarcinoma (PDAC) has shown limited efficacy. Poor CD8 T-cell infiltration, low neoantigen load and a highly immunosuppressive tumour microenvironment contribute to this lack of response. Here, we aimed to further investigate the immunoregulatory function of focal adhesion kinase (FAK) in PDAC, with specific emphasis on regulation of the type-II interferon response that is critical in promoting T-cell tumour recognition and effective immunosurveillance. DESIGN: We combined CRISPR, proteogenomics and transcriptomics with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and validated findings using proteomic analysis of human patient-derived PDAC cell lines and analysis of publicly available human PDAC transcriptomics datasets. RESULTS: Loss of PDAC cell-intrinsic FAK signalling promotes expression of the immunoproteasome and Major Histocompatibility Complex class-I (MHC-I), resulting in increased antigen diversity and antigen presentation by FAK-/- PDAC cells. Regulation of the immunoproteasome by FAK is a critical determinant of this response, optimising the physicochemical properties of the peptide repertoire for high affinity binding to MHC-I. Expression of these pathways can be further amplified in a STAT1-dependent manner via co-depletion of FAK and STAT3, resulting in extensive infiltration of tumour-reactive CD8 T-cells and further restraint of tumour growth. FAK-dependent regulation of antigen processing and presentation is conserved between mouse and human PDAC, but is lost in cells/tumours with an extreme squamous phenotype. CONCLUSION: Therapies aimed at FAK degradation may unlock additional therapeutic benefit for the treatment of PDAC through increasing antigen diversity and promoting antigen presentation.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Humanos , Animales , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Presentación de Antígeno , Evasión Inmune , Proteómica , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Línea Celular TumoralRESUMEN
Thirteen benzylethoxyaryl ureas have been synthesized and biologically evaluated as multitarget inhibitors of VEGFR-2 and PD-L1 proteins to overcome resistance phenomena offered by cancer. The antiproliferative activity of these molecules on several tumor cell lines (HT-29 and A549), on the endothelial cell line HMEC-1, on immune cells (Jurkat T) and on the non-tumor cell line HEK-293 has been determined. Selective indexes (SI) have been also determined and compounds bearing p-substituted phenyl urea unit together with a diaryl carbamate exhibited high SI values. Further studies on these selected compounds to determine their potential as small molecule immune potentiators (SMIPs) and as antitumor agents have been performed. From these studies, we have concluded that the designed ureas have good tumor antiangiogenic properties, exhibit good inhibition of CD11b expression, and regulate pathways involved in CD8 T-cell activity. These properties suggest that these compounds could be potentially useful in the development of new cancer immune treatments.
Asunto(s)
Neoplasias , Urea , Humanos , Urea/farmacología , Células HEK293 , Proliferación Celular , Neoplasias/tratamiento farmacológico , Inmunomodulación , Línea Celular TumoralRESUMEN
BACKGROUND: Pancreatic Cancer is one of the most lethal cancers, with less than 8% of patients surviving 5 years following diagnosis. The last 40 years have seen only small incremental improvements in treatment options, highlighting the continued need to better define the cellular and molecular pathways contributing to therapy response and patient prognosis. METHODS: We combined CRISPR, shRNA and flow cytometry with mechanistic experiments using a KrasG12Dp53R172H mouse model of pancreatic cancer and analysis of publicly available human PDAC transcriptomic datasets. RESULTS: Here, we identify that expression of the immune checkpoint, Programmed Death Ligand 2 (PD-L2), is associated with poor prognosis, tumour grade, clinical stage and molecular subtype in patients with Pancreatic Ductal Adenocarcinoma (PDAC). We further show that PD-L2 is predominantly expressed in the stroma and, using an orthotopic murine model of PDAC, identify cancer cell-intrinsic Focal Adhesion Kinase (FAK) signalling as a regulator of PD-L2 stromal expression. Mechanistically, we find that FAK regulates interleukin-6, which can act in concert with interleukin-4 secreted by CD4 T-cells to drive elevated expression of PD-L2 on tumour-associated macrophages, dendritic cells and endothelial cells. CONCLUSIONS: These findings identify further complex heterocellular signalling networks contributing to FAK-mediated immune suppression in pancreatic cancer.
Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias PancreáticasRESUMEN
E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.
Asunto(s)
Cadherinas/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Adhesión Celular/fisiología , Comunicación Celular/fisiología , Línea Celular Tumoral , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transducción de Señal , Microambiente TumoralRESUMEN
Networks of actin filaments, controlled by the Arp2/3 complex, drive membrane protrusion during cell migration. How integrins signal to the Arp2/3 complex is not well understood. Here, we show that focal adhesion kinase (FAK) and the Arp2/3 complex associate and colocalize at transient structures formed early after adhesion. Nascent lamellipodia, which originate at these structures, do not form in FAK-deficient cells, or in cells in which FAK mutants cannot be autophosphorylated after integrin engagement. The FERM domain of FAK binds directly to Arp3 and can enhance Arp2/3-dependent actin polymerization. Critically, Arp2/3 is not bound when FAK is phosphorylated on Tyr 397. Interfering peptides and FERM-domain point mutants show that FAK binding to Arp2/3 controls protrusive lamellipodia formation and cell spreading. This establishes a new function for the FAK FERM domain in forming a phosphorylation-regulated complex with Arp2/3, linking integrin signalling directly with the actin polymerization machinery.
Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Adhesión Celular/fisiología , Proteína-Tirosina Quinasas de Adhesión Focal/química , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Estructura Terciaria de Proteína , Complejo 2-3 Proteico Relacionado con la Actina/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Integrinas/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Seudópodos/metabolismo , Fibras de Estrés/metabolismo , Tirosina/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismoRESUMEN
The adhesion protein Kindlin-1 is over-expressed in breast cancer where it is associated with metastasis-free survival; however, the mechanisms involved are poorly understood. Here, we report that Kindlin-1 promotes anti-tumor immune evasion in mouse models of breast cancer. Deletion of Kindlin-1 in Met-1 mammary tumor cells led to tumor regression following injection into immunocompetent hosts. This was associated with a reduction in tumor infiltrating Tregs. Similar changes in T cell populations were seen following depletion of Kindlin-1 in the polyomavirus middle T antigen (PyV MT)-driven mouse model of spontaneous mammary tumorigenesis. There was a significant increase in IL-6 secretion from Met-1 cells when Kindlin-1 was depleted and conditioned media from Kindlin-1-depleted cells led to a decrease in the ability of Tregs to suppress the proliferation of CD8+ T cells, which was dependent on IL-6. In addition, deletion of tumor-derived IL-6 in the Kindlin-1-depleted tumors reversed the reduction of tumor-infiltrating Tregs. Overall, these data identify a novel function for Kindlin-1 in regulation of anti-tumor immunity, and that Kindlin-1 dependent cytokine secretion can impact the tumor immune environment.
Asunto(s)
Interleucina-6 , Neoplasias Mamarias Animales , Animales , Ratones , Proteínas Portadoras , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Interleucina-6/metabolismoRESUMEN
Glucocorticoids inhibit angiogenesis by activating the glucocorticoid receptor. Inhibition of the glucocorticoid-activating enzyme 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1) reduces tissue-specific glucocorticoid action and promotes angiogenesis in murine models of myocardial infarction. Angiogenesis is important in the growth of some solid tumours. This study used murine models of squamous cell carcinoma (SCC) and pancreatic ductal adenocarcinoma (PDAC) to test the hypothesis that 11ß-HSD1 inhibition promotes angiogenesis and subsequent tumour growth. SCC or PDAC cells were injected into female FVB/N or C57BL6/J mice fed either standard diet, or diet containing the 11ß-HSD1 inhibitor UE2316. SCC tumours grew more rapidly in UE2316-treated mice, reaching a larger (P<0.01) final volume (0.158 ± 0.037 cm3) than in control mice (0.051 ± 0.007 cm3). However, PDAC tumour growth was unaffected. Immunofluorescent analysis of SCC tumours did not show differences in vessel density (CD31/alpha-smooth muscle actin) or cell proliferation (Ki67) after 11ß-HSD1 inhibition, and immunohistochemistry of SCC tumours did not show changes in inflammatory cell (CD3- or F4/80-positive) infiltration. In culture, the growth/viability (assessed by live cell imaging) of SCC cells was not affected by UE2316 or corticosterone. Second Harmonic Generation microscopy showed that UE2316 reduced Type I collagen (P<0.001), whilst RNA-sequencing revealed that multiple factors involved in the innate immune/inflammatory response were reduced in UE2316-treated SCC tumours. 11ß-HSD1 inhibition increases SCC tumour growth, likely via suppression of inflammatory/immune cell signalling and extracellular matrix deposition, but does not promote tumour angiogenesis or growth of all solid tumours.
Asunto(s)
Glucocorticoides , Neoplasias , Ratones , Femenino , Animales , Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Inflamación , Neovascularización Patológica , FibrosisRESUMEN
Focal adhesion kinase (FAK) is upregulated in several epithelial tumours and there has been considerable interest in developing small molecule kinase inhibitors of FAK. However, FAK also has important adaptor functions within the cell, integrating signals from both integrins and growth factors. To investigate the role of FAKs kinase domain, we generated fak-deficient squamous cell carcinoma (SCC) cell lines. Re-expression of a wild type or kinase dead FAK allowed us to delineate its kinase dependent functions. In addition, we used the novel FAK kinase inhibitor PF-562,271. The kinase activity of FAK was important for tumour cell migration and polarity but more striking was its requirement for the anchorage independent 3 dimensional (3D) proliferation of SCC cells and their growth as xenografts in mice. Inhibition of FAK activity and prevention of growth in 3D correlated with Src inhibition. We further identified a mechanism whereby FAK regulates proliferation in 3D via regulation of the kinase activity of Src. This was dependent on the kinase activity of FAK and its resulting phosphorylation on Y397 that provides a high affinity binding site for Src. These data support the further development of FAK kinase inhibitors as agents that have the potential to inhibit both tumour cell migration and proliferation.
Asunto(s)
Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Movimiento Celular , Proliferación Celular/efectos de los fármacos , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Polaridad Celular , Dasatinib , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/deficiencia , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Indoles/farmacología , Ratones , Ratones Transgénicos , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Transducción de Señal , Sulfonamidas/farmacología , Tiazoles/farmacología , Familia-src Quinasas/metabolismoRESUMEN
Immunotherapy promotes the attack of cancer cells by the immune system; however, it is difficult to detect early responses before changes in tumor size occur. Here, we report the rational design of a fluorogenic peptide able to detect picomolar concentrations of active granzyme B as a biomarker of immune-mediated anticancer action. Through a series of chemical iterations and molecular dynamics simulations, we synthesize a library of FRET peptides and identify probe H5 with an optimal fit into granzyme B. We demonstrate that probe H5 enables the real-time detection of T cell-mediated anticancer activity in mouse tumors and in tumors from lung cancer patients. Furthermore, we show image-based phenotypic screens, which reveal that the AKT kinase inhibitor AZD5363 shows immune-mediated anticancer activity. The reactivity of probe H5 may enable the monitoring of early responses to anticancer treatments using tissue biopsies.
Asunto(s)
Inmunoterapia , Neoplasias Pulmonares , Animales , Biopsia , Granzimas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Ratones , Péptidos , InvestigaciónRESUMEN
We report the development and application of photoactivatable Green Cherry (G(PA)C), the first genetically encoded "continuously red-photoactivatable green" two-color probe for live cell imaging. G(PA)C is unique in that it enables real-time tracking of selected subpopulations of proteins and organelles in the cell or of cells within tissues and whole organisms, with constant reference to the entire population of the probe. Using G(PA)C-zyxin as proof of utility, we obtained new insights into the dynamic movement of the cytoskeletal protein zyxin. We show that zyxin is continuously and rapidly recruited from the cytosol into established focal adhesions. It can also move rapidly within a given focal adhesion and "hop" between adjacent focal adhesions, emphasizing the dynamic nature of proteins within these structures. The in vivo utility of G(PA)C is exemplified by tracking hemocyte movements using a versatile transgenic Drosophila model engineered to express G(PA)C in tissues and cells of interest under the control of the GAL4-inducible promoter.
Asunto(s)
Proteínas de Drosophila/química , Proteínas de Homeodominio/química , Luz , Proteínas Luminiscentes/análisis , Microscopía/métodos , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Animales , Animales Modificados Genéticamente , Adhesión Celular , Movimiento Celular , Color , Drosophila melanogaster , Adhesiones Focales , Ingeniería Genética , Hemocitos/citología , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/química , ZixinaRESUMEN
Focal adhesion kinase (FAK) is both a non-receptor tyrosine kinase and an adaptor protein that primarily regulates adhesion signalling and cell migration, but FAK can also promote cell survival in response to stress. FAK is commonly overexpressed in cancer and is considered a high-value druggable target, with multiple FAK inhibitors currently in development. Evidence suggests that in the clinical setting, FAK targeting will be most effective in combination with other agents so as to reverse failure of chemotherapies or targeted therapies and enhance efficacy of immune-based treatments of solid tumours. Here, we discuss the recent preclinical evidence that implicates FAK in anticancer therapeutic resistance, leading to the view that FAK inhibitors will have their greatest utility as combination therapies in selected patient populations.
Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Humanos , Neoplasias/enzimología , Neoplasias/patologíaRESUMEN
Focal Adhesion Kinase (FAK) inhibitors are currently undergoing clinical testing in combination with anti-PD-1 immune checkpoint inhibitors. However, which patients are most likely to benefit from FAK inhibitors, and what the optimal FAK/immunotherapy combinations are, is currently unknown. We identify that cancer cell expression of the T-cell co-stimulatory ligand CD80 sensitizes murine tumors to a FAK inhibitor and show that CD80 is expressed by human cancer cells originating from both solid epithelial cancers and some hematological malignancies in which FAK inhibitors have not been tested clinically. In the absence of CD80, we identify that targeting alternative T-cell co-stimulatory receptors, in particular OX-40 and 4-1BB in combination with FAK, can drive enhanced anti-tumor immunity and even complete regression of murine tumors. Our findings provide rationale supporting the clinical development of FAK inhibitors in combination with patient selection based on cancer cell CD80 expression, and alternatively with therapies targeting T-cell co-stimulatory pathways.
Asunto(s)
Quinasa 1 de Adhesión Focal , Inhibidores de Puntos de Control Inmunológico , Linfocitos T , Animales , Antígeno B7-1/inmunología , Antígeno B7-1/metabolismo , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones , Neoplasias Experimentales/inmunología , Neoplasias Experimentales/metabolismo , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
The Src family tyrosine kinases are key modulators of cancer cell invasion and metastasis and a number of Src kinase inhibitors are currently in clinical development for the treatment of solid tumours. However, there is growing evidence that Src is also upregulated at very early stages of epithelial cancer development. We have investigated the role of Src in mouse skin, which is one of the most tractable models of epithelial homoeostasis and tumorigenesis. We found that Src protein expression and activity was regulated during the normal hair cycle and was increased specifically during the proliferative anagen phase and also in response to the tumour promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). AZD0530, a selective Src inhibitor, prevented the TPA-induced proliferation of basal keratinocytes both in vivo and in vitro. Moreover, treatment with AZD0530 reduced papilloma formation following the well-established 7,12-dimethylbenz(a)anthracene/TPA skin carcinogenesis protocol but did not inhibit the subsequent proliferation of the papillomas. Furthermore, AZD0530 did not alter the malignant conversion of papillomas to squamous cell carcinoma suggesting a role for Src in early tumour development in the skin carcinogenesis model, rather than at later stages of tumour progression. Src expression and activity were also seen in human actinic keratoses that are hyperproliferative pre-malignant skin lesions, indicating that Src may also play a role in the early stages of human skin tumour development. Thus, Src inhibitors such as AZD0530 may therefore have chemopreventative properties in patients with hyperproliferative epidermal disorders.
Asunto(s)
Anticarcinógenos/uso terapéutico , Benzodioxoles/uso terapéutico , Transformación Celular Neoplásica/efectos de los fármacos , Quinazolinas/uso terapéutico , Neoplasias Cutáneas/prevención & control , Familia-src Quinasas/metabolismo , Adulto , Anciano , Animales , Anticarcinógenos/farmacología , Benzodioxoles/farmacología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Queratosis/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Papiloma/inducido químicamente , Papiloma/tratamiento farmacológico , Lesiones Precancerosas/metabolismo , Quinazolinas/farmacología , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Acetato de Tetradecanoilforbol , Familia-src Quinasas/antagonistas & inhibidoresRESUMEN
Immunization of patients with autologous, ex vivo matured dendritic cell (DC) preparations, in order to prime antitumor T-cell responses, is the focus of intense research. Despite progress and approval of clinical approaches, significant enhancement of these personalized immunotherapies is urgently needed to improve efficacy. We show that immunotherapeutic murine and human DC, generated in the presence of the antimicrobial host defense peptide LL-37, have dramatically enhanced expansion and differentiation of cells with key features of the critical CD103+/CD141+ DC subsets, including enhanced cross-presentation and co-stimulatory capacity, and upregulation of CCR7 with improved migratory capacity. These LL-37-DC enhanced proliferation, activation and cytokine production by CD8+ (but not CD4+) T cells in vitro and in vivo. Critically, tumor antigen-presenting LL-37-DC increased migration of primed, activated CD8+ T cells into established squamous cell carcinomas in mice, and resulted in tumor regression. This advance therefore has the potential to dramatically enhance DC immunotherapy protocols.
RESUMEN
Evasion of apoptosis is a hallmark of human cancer, and a desired endpoint of many anticancer agents is the induction of cell death. With the heterogeneity of cancer becoming increasingly apparent, to understand drug mechanisms of action and identify combination therapies in cell populations, the development of tools to assess drug effects at the single cell level is a necessity for future preclinical drug development. Herein we describe the development of pCasFSwitch, a genetically encoded reporter construct designed to identify cells undergoing caspase-3 mediated apoptosis, by a translocation of a GFP signal from the cell membrane into the nucleus. Anticipated cellular distribution was demonstrated by use of confocal microscopy and cleavage by caspase-3 was shown to be required for the translocation of the GFP signal seen in apoptotic cells. Quantification of apoptosis using the construct revealed similar levels to that obtained with a commercially available apoptosis imaging agent (22.6% versus 20.3%). Moreover, we demonstrated its capacity for use in a high-throughput setting making it a powerful tool for drug development pipelines.
Asunto(s)
Apoptosis/fisiología , Caspasa 3/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Animales , Secuencia de Bases , Línea Celular Tumoral , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Recombinantes de Fusión/genética , Análisis de la Célula Individual/métodosRESUMEN
Herein, we report a straightforward method for the scalable preparation of Pd nanoparticles (Pd-NPs) with reduced inherent cytotoxicity and high photothermal conversion capacity. These Pd-NPs are rapidly taken up by cells and able to kill labeled cancer cells upon short exposure to near-infrared (NIR) light. Following cell treatment with Pd-NPs, ablated areas were patterned with high precision by laser scanning microscopy, allowing one to perform cell migration assays with unprecedented accuracy. Using coherent Raman microscopy, cells containing Pd-NPs were simultaneously ablated and imaged. This novel methodology was combined with intravital imaging to mediate microablation of cancerous tissue in tumor xenografts in mice.
Asunto(s)
Nanopartículas del Metal , Animales , Ratones , Microscopía Confocal , Neoplasias , Paladio , FototerapiaRESUMEN
Elevated levels of Src kinase expression have been found in a variety of human epithelial cancers. Most notably in colon cancer, elevated Src expression correlates with malignant potential and is also associated with metastatic disease. Dasatinib (BMS-354825) is a novel, orally active, multi-targeted kinase inhibitor that targets Src family kinases and is currently under clinical evaluation for the treatment of solid tumors. However, the effects of dasatinib on epithelial tumors are not fully understood. We show that concentrations of dasatinib that inhibit Src activity do not inhibit proliferation in 10 of 12 colon cancer cells lines. However, inhibition of integrin-dependent adhesion and migration by dasatinib correlated with inhibition of Src activity, suggesting that dasatinib may have anti-invasive or anti-metastatic activity and antiproliferative activity in epithelial tumors. Using phospho-specific antibodies, we show that inhibition of Src activity in colon cancer cell lines correlates with reduced phosphorylation of focal adhesion kinase and paxillin on specific Src-dependent phosphorylation sites. We have validated the use of phospho-specific antibodies against Src Tyr(419) and paxillin Tyr(118) as biomarkers of dasatinib activity in vivo. Colon carcinoma-bearing mice treated with dasatinib showed a decrease in both phospho-Src Tyr(419) and phospho-paxillin Tyr(118) in peripheral blood mononuclear cells, which correlated with inhibition of Src activity in the colon tumors. Thus, peripheral blood mononuclear cells may provide a useful surrogate tissue for biomarker studies with dasatinib using inhibition of Src Tyr(419) and paxillin Tyr(118) phosphorylation as read-outs of Src activity.