Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38194688

RESUMEN

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Asunto(s)
Sistema Hematopoyético , Enfermedades Mielodisplásicas-Mieloproliferativas , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Ratones , Humanos , Mielofibrosis Primaria/genética , Trastornos Mieloproliferativos/genética , Mutación , Proteínas Portadoras/genética , Proteínas Nucleares/genética
2.
Genes Dev ; 28(2): 182-97, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24449271

RESUMEN

The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Placa Neural/citología , Placa Neural/metabolismo , Proteínas Oncogénicas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Ligandos , Ratones , Chaperonas Moleculares , Neurogénesis/genética , Proteínas Oncogénicas/genética , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/genética , Proteínas de Unión al ARN , Proteínas Represoras/genética , Transducción de Señal , Proteínas Wnt/metabolismo
3.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613611

RESUMEN

Haploinsufficiency of the SETD5 gene, encoding a SET domain-containing histone methyltransferase, has been identified as a cause of intellectual disability and Autism Spectrum Disorder (ASD). Recently, the zebrafish has emerged as a valuable model to study neurodevelopmental disorders because of its genetic tractability, robust behavioral traits and amenability to high-throughput drug screening. To model human SETD5 haploinsufficiency, we generated zebrafish setd5 mutants using the CRISPR/Cas9 technology and characterized their morphological, behavioral and molecular phenotypes. According to our observation that setd5 is expressed in adult zebrafish brain, including those areas controlling social behavior, we found that setd5 heterozygous mutants exhibit defective aggregation and coordination abilities required for shoaling interactions, as well as indifference to social stimuli. Interestingly, impairment in social interest is rescued by risperidone, an antipsychotic drug used to treat behavioral traits in ASD individuals. The molecular analysis underscored the downregulation of genes encoding proteins involved in the synaptic structure and function in the adult brain, thus suggesting that brain hypo-connectivity could be responsible for the social impairments of setd5 mutant fishes. The zebrafish setd5 mutants display ASD-like features and are a promising setd5 haploinsufficiency model for drug screening aimed at reversing the behavioral phenotypes.


Asunto(s)
Trastorno del Espectro Autista , Metiltransferasas , Animales , Humanos , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Conducta Social
4.
J Neurosci ; 40(37): 7013-7026, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32801157

RESUMEN

Sulfotransferase 4A1 (SULT4A1) is a cytosolic sulfotransferase that is highly conserved across species and extensively expressed in the brain. However, the biological function of SULT4A1 is unclear. SULT4A1 has been implicated in several neuropsychiatric disorders, such as Phelan-McDermid syndrome and schizophrenia. Here, we investigate the role of SULT4A1 within neuron development and function. Our data demonstrate that SULT4A1 modulates neuronal branching complexity and dendritic spines formation. Moreover, we show that SULT4A1, by negatively regulating the catalytic activity of Pin1 toward PSD-95, facilitates NMDAR synaptic expression and function. Finally, we demonstrate that the pharmacological inhibition of Pin1 reverses the pathologic phenotypes of neurons knocked down by SULT4A1 by specifically restoring dendritic spine density and rescuing NMDAR-mediated synaptic transmission. Together, these findings identify SULT4A1 as a novel player in neuron development and function by modulating dendritic morphology and synaptic activity.SIGNIFICANCE STATEMENT Sulfotransferase 4A1 (SULT4A1) is a brain-specific sulfotransferase highly expressed in neurons. Different evidence has suggested that SULT4A1 has an important role in neuronal function and that SULT4A1 altered expression might represent a contributing factor in multiple neurodevelopmental disorders. However, the function of SULT4A1 in the mammalian brain is still unclear. Here, we demonstrate that SULT4A1 is highly expressed at postsynaptic sites where it sequesters Pin1, preventing its negative action on synaptic transmission. This study reveals a novel role of SULT4A1 in the modulation of NMDA receptor activity and strongly contributes to explaining the neuronal dysfunction observed in patients carrying deletions of SULTA41 gene.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/metabolismo , Neurogénesis , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfotransferasas/metabolismo , Sinapsis/metabolismo , Animales , Células Cultivadas , Espinas Dendríticas/metabolismo , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Ratas , Sulfotransferasas/genética , Sinapsis/fisiología , Transmisión Sináptica
5.
Dev Biol ; 434(2): 231-248, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305158

RESUMEN

During cerebral cortex development, neural progenitors are required to elaborate a variety of cell differentiation signals to which they are continuously exposed. RA acid is a potent inducer of neuronal differentiation as it was found to influence cortical development. We report herein that TBR2, a transcription factor specific to Intermediate (Basal) Neural Progenitors (INPs), represses activation of the RA responsive element and expression of RA target genes in cell lines. This repressive action on RA signaling was functionally confirmed by the decrease of RA-mediated neuronal differentiation in neural stem cells stably overexpressing TBR2. In vivo mapping of RA activity in the developing cortex indicated that RA activity is detected in radial glial cells and subsequently downregulated in INPs, revealing a fine cell-type specific regulation of its signaling. Thus, TBR2 might be a molecular player in opposing RA signaling in INPs. Interestingly, this negative regulation is achieved at least in part by directly repressing the critical nuclear RA co-factor ZFP423. Indeed, we found ZFP423 to be expressed in the developing cortex and promote RA-dependent neuronal differentiation. These data indicate that TBR2 contributes to suppressing RA signaling in INPs, thereby enabling them to re-enter the cell cycle and delay neuronal differentiation.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Corteza Cerebral/embriología , Proteínas de Unión al ADN/metabolismo , Células-Madre Neurales/metabolismo , Organogénesis/efectos de los fármacos , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Ratones , Células-Madre Neurales/citología , Organogénesis/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética
6.
J Cell Physiol ; 233(4): 3152-3163, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28816361

RESUMEN

mSEL-1L is a highly conserved ER-resident type I protein, involved in the degradation of misfolded peptides through the ubiquitin-proteasome system (UPS), a pathway known to control the plasticity of the vascular smooth muscle cells (VSMC) phenotype and survival. In this article, we demonstrate that mSEL-1L deficiency interferes with the murine embryonic vascular network, showing particular irregularities in the intracranic and intersomitic neurovascular units and in the cerebral capillary microcirculation. During murine embryogenesis, mSEL-1L is expressed in cerebral areas known to harbor progenitor neural cells, while in the adult brain the protein is specifically restricted to the stem cell niches, co-localizing with Sox2 and Nestin. Null mice are characterized by important defects in the development of telenchephalic regions, revealing conspicuous aberration in neural stem cell lineage commitment. Moreover, mSEL-1L depletion in vitro and in vivo appears to affect the harmonic differentiation of the NSCs, by negatively influencing the corticogenesis processes. Overall, the data presented suggests that the drastic phenotypic characteristics exhibited in mSEL-1L null mice can, in part, be explained by the negative influence it plays on Notch1 signaling pathway.


Asunto(s)
Linaje de la Célula , Neovascularización Fisiológica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Proteínas/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proliferación Celular , Autorrenovación de las Células , Genoma , Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Receptores Notch/metabolismo , Transcriptoma/genética
7.
Cereb Cortex ; 27(6): 3378-3396, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27600842

RESUMEN

The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways.


Asunto(s)
Diferenciación Celular/genética , Corteza Cerebral/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células-Madre Neurales/fisiología , Neuronas/fisiología , Proteínas de Dominio T Box/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular/genética , Movimiento Celular/genética , Polaridad Celular/genética , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/genética , Hipocampo/citología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo
8.
Mol Ther ; 25(12): 2727-2742, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28882452

RESUMEN

The lack of technology for direct global-scale targeting of the adult mouse nervous system has hindered research on brain processing and dysfunctions. Currently, gene transfer is normally achieved by intraparenchymal viral injections, but these injections target a restricted brain area. Herein, we demonstrated that intravenous delivery of adeno-associated virus (AAV)-PHP.B viral particles permeated and diffused throughout the neural parenchyma, targeting both the central and the peripheral nervous system in a global pattern. We then established multiple procedures of viral transduction to control gene expression or inactivate gene function exclusively in the adult nervous system and assessed the underlying behavioral effects. Building on these results, we established an effective gene therapy strategy to counteract the widespread accumulation of α-synuclein deposits throughout the forebrain in a mouse model of synucleinopathy. Transduction of A53T-SCNA transgenic mice with AAV-PHP.B-GBA1 restored physiological levels of the enzyme, reduced α-synuclein pathology, and produced significant behavioral recovery. Finally, we provided evidence that AAV-PHP.B brain penetration does not lead to evident dysfunctions in blood-brain barrier integrity or permeability. Altogether, the AAV-PHP.B viral platform enables non-invasive, widespread, and long-lasting global neural expression of therapeutic genes, such as GBA1, providing an invaluable approach to treat neurodegenerative diseases with diffuse brain pathology such as synucleinopathies.


Asunto(s)
Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , beta-Glucosidasa/metabolismo , Animales , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía , Activación Enzimática , Orden Génico , Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transducción Genética , Proteína 1 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
9.
Genes Dev ; 24(16): 1816-26, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20713522

RESUMEN

Little is known about how, during its formidable expansion in development and evolution, the cerebral cortex is able to maintain the correct balance between excitatory and inhibitory neurons. In fact, while the former are born within the cortical primordium, the latter originate outward in the ventral pallium. Therefore, it remains to be addressed how these two neuronal populations might coordinate their relative amounts in order to build a functional cortical network. Here, we show that Tbr2-positive cortical intermediate (basal) neuronal progenitors (INPs) dictate the migratory route and control the amount of subpallial GABAergic interneurons in the subventricular zone (SVZ) through a non-cell-autonomous mechanism. In fact, Tbr2 interneuron attractive activity is moderated by Cxcl12 chemokine signaling, whose forced expression in the Tbr2 mutants can rescue, to some extent, SVZ cell migration. We thus propose that INPs are able to control simultaneously the increase of glutamatergic and GABAergic neuronal pools, thereby creating a simple way to intrinsically balance their relative accumulation.


Asunto(s)
Corteza Cerebral , Regulación del Desarrollo de la Expresión Génica , Interneuronas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Células Madre/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Proteínas de Dominio T Box/genética
10.
Cereb Cortex ; 25(2): 322-35, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23968833

RESUMEN

Mutations in the Aristaless-related homeobox (ARX) gene are found in a spectrum of epilepsy and X-linked intellectual disability disorders. During development Arx is expressed in pallial ventricular zone (VZ) progenitor cells where the excitatory projection neurons of the cortex are born. Arx(-/Y) mice were shown to have decreased proliferation in the cortical VZ resulting in smaller brains; however, the basis for this reduced proliferation was not established. To determine the role of ARX on cell cycle dynamics in cortical progenitor cells, we generated cerebral cortex-specific Arx mouse mutants (cKO). The loss of pallial Arx resulted in the reduction of cortical progenitor cells, particularly the proliferation of intermediate progenitor cells (IPCs) was affected. Later in development and postnatally cKO brains showed a reduction of upper layer but not deeper layer neurons consistent with the IPC defect. Transcriptional profile analysis of E14.5 Arx-ablated cortices compared with control revealed that CDKN1C, an inhibitor of cell cycle progression, is overexpressed in the cortical VZ and SVZ of Arx KOs throughout corticogenesis. We also identified ARX as a direct regulator of Cdkn1c transcription. Together these data support a model where ARX regulates the expansion of cortical progenitor cells through repression of Cdkn1c.


Asunto(s)
Ciclo Celular/fisiología , Corteza Cerebral/crecimiento & desarrollo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Factores de Transcripción/metabolismo , Animales , Recuento de Células , Proliferación Celular/fisiología , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Proteínas de Homeodominio/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitosis/fisiología , Células-Madre Neurales/patología , Neuroglía/patología , Neuroglía/fisiología , Neuronas/patología , Neuronas/fisiología , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiopatología , Tamaño de los Órganos , Factores de Transcripción/genética , Transcriptoma
11.
Front Mol Neurosci ; 17: 1399953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38756706

RESUMEN

Over the years, advancements in modeling neurological diseases have revealed innovative strategies aimed at gaining deeper insights and developing more effective treatments for these complex conditions. However, these progresses have recently been overshadowed by an increasing number of failures in clinical trials, raising doubts about the reliability and translatability of this type of disease modeling. This mini-review does not aim to provide a comprehensive overview of the current state-of-the-art in disease mouse modeling. Instead, it offers a brief excursus over some recent approaches in modeling neurological diseases to pinpoint a few intriguing strategies applied in the field that may serve as sources of inspiration for improving currently available animal models. In particular, we aim to guide the reader toward the potential success of adopting a more orthogonal approach in the study of human diseases.

12.
Cereb Cortex ; 22(10): 2415-27, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22095214

RESUMEN

The canonical Wnt/Wingless pathway is implicated in regulating cell proliferation and cell differentiation of neural stem/progenitor cells. Depending on the context, ß-Catenin, a key mediator of the Wnt signaling pathway, may regulate either cell proliferation or differentiation. Here, we show that ß-Catenin signaling regulates the differentiation of neural stem/progenitor cells in the presence of the ß-Catenin interactor Homeodomain interacting protein kinase-1 gene (Hipk1). On one hand, Hipk1 is expressed at low levels during the entire embryonic forebrain development, allowing ß-Catenin to foster proliferation and to inhibit differentiation of neural stem/progenitor cells. On the other hand, Hipk1 expression dramatically increases in neural stem/progenitor cells, residing within the subventricular zone (SVZ), at the time when the canonical Wnt signaling induces cell differentiation. Analysis of mouse brains electroporated with Hipk1, and the active form of ß-Catenin reveals that coexpression of both genes induces proliferating neural stem/progenitor cells to escape the cell cycle. Moreover, in SVZ derive neurospheres cultures, the overexpression of both genes increases the expression of the cell-cycle inhibitor P16Ink4. Therefore, our data confirm that the ß-Catenin signaling plays a dual role in controlling cell proliferation/differentiation in the brain and indicate that Hipk1 is the crucial interactor able to revert the outcome of ß-Catenin signaling in neural stem/progenitor cells of adult germinal niches.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Animales , Ratones , Ratones Transgénicos , Distribución Tisular
14.
Mol Autism ; 14(1): 20, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264456

RESUMEN

BACKGROUND: Neurodevelopmental disorders (NDDs) are heterogeneous conditions due to alterations of a variety of molecular mechanisms and cell dysfunctions. SETD5 haploinsufficiency leads to NDDs due to chromatin defects. Epigenetic basis of NDDs has been reported in an increasing number of cases while mitochondrial dysfunctions are more common within NDD patients than in the general population. METHODS: We investigated in vitro neural stem cells as well as the brain of the Setd5 haploinsufficiency mouse model interrogating its transcriptome, analyzing mitochondrial structure, biochemical composition, and dynamics, as well as mitochondrial functionality. RESULTS: Mitochondrial impairment is facilitated by transcriptional aberrations originated by the decrease of the SETD5 enzyme. Low levels of SETD5 resulted in fragmented mitochondria, reduced mitochondrial membrane potential, and ATP production both in neural precursors and neurons. Mitochondria were also mislocalized in mutant neurons, with reduced organelles within neurites and synapses. LIMITATIONS: We found several defects in the mitochondrial compartment; however, we can only speculate about their position in the hierarchy of the pathological mechanisms at the basis of the disease. CONCLUSIONS: Our study explores the interplay between chromatin regulation and mitochondria functions as a possible important aspect of SETD5-associated NDD pathophysiology. Our data, if confirmed in patient context, suggest that the mitochondrial activity and dynamics may represent new therapeutic targets for disorders associated with the loss of SETD5.


Asunto(s)
Haploinsuficiencia , Células-Madre Neurales , Ratones , Animales , Humanos , Neuronas/metabolismo , Mitocondrias/metabolismo , Células-Madre Neurales/metabolismo , Cromatina/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo
15.
Nat Commun ; 14(1): 3212, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37270547

RESUMEN

Within the chromatin, distal elements interact with promoters to regulate specific transcriptional programs. Histone acetylation, interfering with the net charges of the nucleosomes, is a key player in this regulation. Here, we report that the oncoprotein SET is a critical determinant for the levels of histone acetylation within enhancers. We disclose that a condition in which SET is accumulated, the severe Schinzel-Giedion Syndrome (SGS), is characterized by a failure in the usage of the distal regulatory regions typically employed during fate commitment. This is accompanied by the usage of alternative enhancers leading to a massive rewiring of the distal control of the gene transcription. This represents a (mal)adaptive mechanism that, on one side, allows to achieve a certain degree of differentiation, while on the other affects the fine and corrected maturation of the cells. Thus, we propose the differential in cis-regulation as a contributing factor to the pathological basis of SGS and possibly other the SET-related disorders in humans.


Asunto(s)
Elementos de Facilitación Genéticos , Histonas , Humanos , Histonas/genética , Histonas/metabolismo , Elementos de Facilitación Genéticos/genética , Diferenciación Celular/genética , Cromatina/genética , Regiones Promotoras Genéticas/genética
16.
Sci Adv ; 8(31): eabn3986, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35921410

RESUMEN

Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Animales , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Epigénesis Genética , Glioblastoma/metabolismo , Glioma/patología , Humanos , Ratones , Células Madre Neoplásicas/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo
17.
Sci Immunol ; 7(67): eabl9929, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-34812647

RESUMEN

The development of a tractable small animal model faithfully reproducing human coronavirus disease 2019 pathogenesis would arguably meet a pressing need in biomedical research. Thus far, most investigators have used transgenic mice expressing the human ACE2 in epithelial cells (K18-hACE2 transgenic mice) that are intranasally instilled with a liquid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suspension under deep anesthesia. Unfortunately, this experimental approach results in disproportionate high central nervous system infection leading to fatal encephalitis, which is rarely observed in humans and severely limits this model's usefulness. Here, we describe the use of an inhalation tower system that allows exposure of unanesthetized mice to aerosolized virus under controlled conditions. Aerosol exposure of K18-hACE2 transgenic mice to SARS-CoV-2 resulted in robust viral replication in the respiratory tract, anosmia, and airway obstruction but did not lead to fatal viral neuroinvasion. When compared with intranasal inoculation, aerosol infection resulted in a more pronounced lung pathology including increased immune infiltration, fibrin deposition, and a transcriptional signature comparable to that observed in SARS-CoV-2­infected patients. This model may prove useful for studies of viral transmission, disease pathogenesis (including long-term consequences of SARS-CoV-2 infection), and therapeutic interventions.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , COVID-19/fisiopatología , Modelos Animales de Enfermedad , Encefalitis Viral/prevención & control , Queratina-18/genética , Rociadores Nasales , SARS-CoV-2/fisiología , Administración por Inhalación , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/virología , Encefalitis Viral/mortalidad , Células Epiteliales/metabolismo , Femenino , Humanos , Queratina-18/metabolismo , Pulmón/inmunología , Pulmón/patología , Pulmón/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , Transcriptoma , Replicación Viral
18.
Biomolecules ; 11(11)2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34827709

RESUMEN

The advent of next-generation sequencing (NGS) is heavily changing both the diagnosis of human conditions and basic biological research. It is now possible to dig deep inside the genome of hundreds of thousands or even millions of people and find both common and rare genomic variants and to perform detailed phenotypic characterizations of both physiological organs and experimental models. Recent years have seen the introduction of multiple techniques using NGS to profile transcription, DNA and chromatin modifications, protein binding, etc., that are now allowing us to profile cells in bulk or even at a single-cell level. Although rare and ultra-rare diseases only affect a few people, each of these diseases represent scholarly cases from which a great deal can be learned about the pathological and physiological function of genes, pathways, and mechanisms. Therefore, for rare diseases, state-of-the-art investigations using NGS have double valence: their genomic cause (new variants) and the characterize the underlining the mechanisms associated with them (discovery of gene function) can be found. In a non-exhaustive manner, this review will outline the main usage of NGS-based techniques for the diagnosis and characterization of neurodevelopmental disorders (NDDs), under whose umbrella many rare and ultra-rare diseases fall.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Raras , Humanos , Análisis de Secuencia de ADN
19.
Front Cell Dev Biol ; 9: 641410, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708771

RESUMEN

TBL1XR1 gene is associated with multiple developmental disorders presenting several neurological aspects. The relative protein is involved in the modulation of important cellular pathways and master regulators of transcriptional output, including nuclear receptor repressors, Wnt signaling, and MECP2 protein. However, TBL1XR1 mutations (including complete loss of its functions) have not been experimentally studied in a neurological context, leaving a knowledge gap in the mechanisms at the basis of the diseases. Here, we show that Tbl1xr1 knock-out mice exhibit behavioral and neuronal abnormalities. Either the absence of TBL1XR1 or its point mutations interfering with stability/regulation of NCOR complex induced decreased proliferation and increased differentiation in neural progenitors. We suggest that this developmental unbalance is due to a failure in the regulation of the MAPK cascade. Taken together, our results broaden the molecular and functional aftermath of TBL1XR1 deficiency associated with human disorders.

20.
Nat Commun ; 12(1): 4050, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34193871

RESUMEN

The investigation of genetic forms of juvenile neurodegeneration could shed light on the causative mechanisms of neuronal loss. Schinzel-Giedion syndrome (SGS) is a fatal developmental syndrome caused by mutations in the SETBP1 gene, inducing the accumulation of its protein product. SGS features multi-organ involvement with severe intellectual and physical deficits due, at least in part, to early neurodegeneration. Here we introduce a human SGS model that displays disease-relevant phenotypes. We show that SGS neural progenitors exhibit aberrant proliferation, deregulation of oncogenes and suppressors, unresolved DNA damage, and resistance to apoptosis. Mechanistically, we demonstrate that high SETBP1 levels inhibit P53 function through the stabilization of SET, which in turn hinders P53 acetylation. We find that the inheritance of unresolved DNA damage in SGS neurons triggers the neurodegenerative process that can be alleviated either by PARP-1 inhibition or by NAD + supplementation. These results implicate that neuronal death in SGS originates from developmental alterations mainly in safeguarding cell identity and homeostasis.


Asunto(s)
Anomalías Múltiples/patología , Proteínas Portadoras/metabolismo , Anomalías Craneofaciales/patología , Daño del ADN , Deformidades Congénitas de la Mano/patología , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Discapacidad Intelectual/patología , Mutación , Uñas Malformadas/patología , Células-Madre Neurales/patología , Proteínas Nucleares/metabolismo , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Proteínas Portadoras/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/genética , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Uñas Malformadas/genética , Uñas Malformadas/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Nucleares/genética , Organoides
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA