Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 51(18): 9542-9551, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650628

RESUMEN

Xeno-nucleic acids (XNAs) have gained significant interest as synthetic genetic polymers for practical applications in biomedicine, but very little is known about their biophysical properties. Here, we compare the stability and mechanism of acid-mediated degradation of α-l-threose nucleic acid (TNA) to that of natural DNA and RNA. Under acidic conditions and elevated temperature (pH 3.3 at 90°C), TNA was found to be significantly more resistant to acid-mediated degradation than DNA and RNA. Mechanistic insights gained by reverse-phase HPLC and mass spectrometry indicate that the resilience of TNA toward low pH environments is due to a slower rate of depurination caused by induction of the 2'-phosphodiester linkage. Similar results observed for 2',5'-linked DNA and 2'-O-methoxy-RNA implicate the position of the phosphodiester group as a key factor in destabilizing the formation of the oxocarbenium intermediate responsible for depurination and strand cleavage of TNA. Biochemical analysis indicates that strand cleavage occurs by ß-elimination of the 2'-phosphodiester linkage to produce an upstream cleavage product with a 2'-threose sugar and a downstream cleavage product with a 3' terminal phosphate. This work highlights the unique physicochemical properties available to evolvable non-natural genetic polymers currently in development for biomedical applications.

2.
Biochemistry ; 60(1): 1-5, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356161

RESUMEN

A recently described DNA polymerase ribozyme, obtained by in vitro evolution, provides the opportunity to investigate mechanistic features of RNA catalysis using methods that previously had only been applied to DNA polymerase proteins. Insight can be gained into the transition state of the DNA polymerization reaction by studying the behavior of various ß,γ-bridging substituted methylene (CXY; X, Y = H, halo, methyl) or imido (NH) dNTP analogues that differ with regard to the pKa4 of the bisphosphonate or imidodiphosphate leaving group. The apparent rate constant (kpol) of the polymerase ribozyme was determined for analogues of dGTP and dCTP that span a broad range of acidities for the leaving group, ranging from 7.8 for the CF2-bisphosphonate to 11.6 for the CHCH3-bisphosphonate. A Brønsted plot of log(kpol) versus pKa4 of the leaving group demonstrates linear free energy relationships (LFERs) for dihalo-, monohalo-, and non-halogen-substituted analogues of the dNTPs, with negative slopes, as has been observed for DNA polymerase proteins. The unsubstituted dNTPs have a faster catalytic rate than would be predicted from consideration of the linear free energy relationship alone, presumably due to a relatively more favorable interaction of the ß,γ-bridging oxygen within the active site. Although the DNA polymerase ribozyme is considerably slower than DNA polymerase proteins, it exhibits a similar LFER fingerprint, suggesting mechanistic commonality pertaining to the buildup of negative charge in the transition state, despite the very different chemical compositions of the two catalysts.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Desoxirribonucleótidos/química , Polifosfatos/química , ARN Catalítico/metabolismo , Humanos , Cinética , Polimerizacion , ARN Catalítico/química
3.
J Org Chem ; 83(12): 6259-6274, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29771526

RESUMEN

We describe regio- and stereoselective cycloisomerizations of alcohols tethered to epoxyalkenes, to construct alkene-substituted pyrans. These transformations are best catalyzed by Pd(PPh3)4 in the presence of phosphite ligands, and with diphenylphosphinic acid as an essential Brønsted acid cocatalyst for activation of the epoxyalkene.

4.
Tetrahedron Lett ; 56(23): 3413-3415, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26028783

RESUMEN

N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC) is a potent activator of the TrkB receptor in mammalian neurons and of interest because of its potential therapeutic uses. In the absence of a commercial supply of HIOC, we sought to produce several grams of material. However, a synthesis of HIOC has never been published. Herein we report the preparation of HIOC by the chemoselective N-acylation of serotonin, without using blocking groups in the key acylation step.

5.
Artículo en Inglés | MEDLINE | ID: mdl-38904107

RESUMEN

The chemical synthesis of guanosine nucleosides generates both the N9 and N7 regioisomers, which require careful separation to obtain the desired N9 isomer. To preferentially obtain the N9 isomer, a bulky diphenylcarbamoyl (DPC) group can be installed at the O6 position of guanine. However, installation of the DPC group presents a challenging task due to low solubility of the N-acetyl protected guanine. Here we report the usage of commercially available 2-amino-6-chloro purine as a new strategy that offers a more efficient route to the synthesis of the guanine phosphoramidite of threose nucleic acid (TNA).

6.
J Neurotrauma ; 38(20): 2896-2906, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34353120

RESUMEN

Pressure waves from explosions or other traumatic events can damage the neurons of the eye and visual centers of the brain, leading to functional loss of vision. There are currently few treatments for such injuries that can be deployed rapidly to mitigate damage. Brain-derived neurotrophic factor (BDNF) and activation of its receptor tropomycin-related kinase B (TrkB) have neuroprotective effects in a number of degeneration models. Small molecule activators of TrkB, such as N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-2-oxopiperidine-3-carboxamide (HIOC), cross the blood-brain and blood-retina barriers after systemic administration. We characterize the effects of blast-induced ocular trauma on retinal and visual function. We show that systemic administration of HIOC, a potent small molecule activator of the BDNF/TrkB receptor, preserves visual function in mice exposed to ocular blast injury. The HIOC treatment for one week preserves visual function for at least four months. The HIOC treatment effectively protected vision when the initial dose was administered up to 3 h after blast, but not if the initial treatment was delayed for 24 h. We provide evidence that the therapeutic effect of HIOC is mediated by activation of BDNF/TrkB receptors. The results indicate that HIOC may be useful for managing ocular blast injury and other forms of traumatic optic neuropathy.


Asunto(s)
Traumatismos por Explosión/complicaciones , Ceguera/tratamiento farmacológico , Ceguera/etiología , Lesiones Oculares/complicaciones , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/etiología , Receptor trkB/agonistas , Animales , Barrera Hematoencefálica/metabolismo , Barrera Hematorretinal/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Neuroprotección , Fármacos Neuroprotectores/farmacología , Retina/fisiopatología , Tiempo de Tratamiento , Resultado del Tratamiento
7.
J Antibiot (Tokyo) ; 72(6): 364-374, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30607013

RESUMEN

We describe a novel strategy for synthesizing the CD bicyclic ether substructure of the fused polycyclic ether natural product brevenal. This product arises from a three-step sequence beginning with (1) regio- and diastereoselective iodoetherification of an acyclic diene-diol, followed by (2) alkene metathesis with an epoxyalkene synthon, concluding with (3) palladium-catalyzed cycloisomerization. Despite the modest yield and long reaction period for the cycloisomerization step, these studies provide valuable insights into the nature of byproducts generated and the mechanisms by which they form. This work demonstrates a portion of a larger synthetic strategy for constructing the pentacyclic core of brevenal from an acyclic precursor.


Asunto(s)
Éteres/síntesis química , Polímeros/síntesis química , Catálisis , Éteres/química , Estructura Molecular , Paladio , Polímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA