Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(21): e2200713119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594402

RESUMEN

Body size covaries with population dynamics across life's domains. Metabolism may impose fundamental constraints on the coevolution of size and demography, but experimental tests of the causal links remain elusive. We leverage a 60,000-generation experiment in which Escherichia coli populations evolved larger cells to examine intraspecific metabolic scaling and correlations with demographic parameters. Over the course of their evolution, the cells have roughly doubled in size relative to their ancestors. These larger cells have metabolic rates that are absolutely higher, but relative to their size, they are lower. Metabolic theory successfully predicted the relations between size, metabolism, and maximum population density, including support for Damuth's law of energy equivalence, such that populations of larger cells achieved lower maximum densities but higher maximum biomasses than populations of smaller cells. The scaling of metabolism with cell size thus predicted the scaling of size with maximum population density. In stark contrast to standard theory, however, populations of larger cells grew faster than those of smaller cells, contradicting the fundamental and intuitive assumption that the costs of building new individuals should scale directly with their size. The finding that the costs of production can be decoupled from size necessitates a reevaluation of the evolutionary drivers and ecological consequences of biological size more generally.


Asunto(s)
Ecología , Escherichia coli , Evolución Biológica , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Mol Biol Evol ; 40(3)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788632

RESUMEN

Horizontal gene transfer (HGT) is important for microbial evolution, but how evolutionary forces shape the frequencies of horizontally transferred genetic variants in the absence of strong selection remains an open question. In this study, we evolve laboratory populations of Acinetobacter baylyi (ADP1) with HGT from two clinically relevant strains of multidrug-resistant Acinetobacter baumannii (AB5075 and A9844). We find that DNA can cross the species barrier, even without strong selection, and despite substantial DNA sequence divergence between the two species. Our results confirm previous findings that HGT can drive the spread of antibiotic resistance genes (ARGs) without selection for that antibiotic, but not for all of the resistance genes present in the donor genome. We quantify the costs and benefits of horizontally transferred variants and use whole population sequencing to track the spread of ARGs from HGT donors into antibiotic-sensitive recipients. We find that even though most ARGs are taken up by populations of A. baylyi, the long-term fate of an individual gene depends both on its fitness cost and on the type of genetic element that carries the gene. Interestingly, we also found that an integron, but not its host plasmid, is able to spread in A. baylyi populations despite its strong deleterious effect. Altogether, our results show how HGT provides an evolutionary advantage to evolving populations by facilitating the spread of non-selected genetic variation including costly ARGs.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Transferencia de Gen Horizontal , Plásmidos , Farmacorresistencia Microbiana , Acinetobacter baumannii/genética
3.
J Mol Evol ; 86(2): 111-117, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29349600

RESUMEN

A major goal of evolutionary biology is to understand how beneficial mutations translate into increased fitness. Here, we study beneficial mutations that arise in experimental populations of yeast evolved in glucose-rich media. We find that fitness increases are caused by enhanced maximum growth rate (R) that come at the cost of reduced yield (K). We show that for some of these mutants, high R coincides with higher rates of ethanol secretion, suggesting that higher growth rates are due to an increased preference to utilize glucose through the fermentation pathway, instead of respiration. We examine the performance of mutants across gradients of glucose and nitrogen concentrations and show that the preference for fermentation over respiration is influenced by the availability of glucose and nitrogen. Overall, our data show that selection for high growth rates can lead to an enhanced Crabtree phenotype by the way of beneficial mutations that permit aerobic fermentation at a greater range of glucose concentrations.


Asunto(s)
Aptitud Genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Evolución Biológica , Etanol/metabolismo , Evolución Molecular , Fermentación/genética , Glucosa/metabolismo , Mutación , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
ISME J ; 16(5): 1442-1452, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35066567

RESUMEN

Species loss within a microbial community can increase resource availability and spur adaptive evolution. Environmental shifts that cause species loss or fluctuations in community composition are expected to become more common, so it is important to understand the evolutionary forces that shape the stability and function of the emergent community. Here we study experimental cultures of a simple, ecologically stable community of Saccharomyces cerevisiae and Lactobacillus plantarum, in order to understand how the presence or absence of a species impacts coexistence over evolutionary timescales. We found that evolution in coculture led to drastically altered evolutionary outcomes for L. plantarum, but not S. cerevisiae. Both monoculture- and co-culture-evolved L. plantarum evolved dozens of mutations over 925 generations of evolution, but only L. plantarum that had evolved in isolation from S. cerevisiae lost the capacity to coexist with S. cerevisiae. We find that the evolutionary loss of ecological stability corresponds with fitness differences between monoculture-evolved L. plantarum and S. cerevisiae and genetic changes that repeatedly evolve across the replicate populations of L. plantarum. This work shows how coevolution within a community can prevent destabilising evolution in individual species, thereby preserving ecological diversity and stability, despite rapid adaptation.


Asunto(s)
Microbiota , Saccharomyces cerevisiae , Aclimatación , Adaptación Fisiológica/genética , Microbiota/genética , Saccharomyces cerevisiae/genética
5.
ISME J ; 15(3): 746-761, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33093620

RESUMEN

Microbial communities are comprised of many species that coexist on small spatial scales. This is difficult to explain because many interspecies interactions are competitive, and ecological theory predicts that one species will drive the extinction of another species that competes for the same resource. Conversely, evolutionary theory proposes that natural selection can lead to coexistence by driving competing species to use non-overlapping resources. However, evolutionary escape from extinction may be slow compared to the rate of competitive exclusion. Here, we use experimental co-cultures of Escherichia coli and Saccharomyces cerevisiae to study the evolution of coexistence in species that compete for resources. We find that while E. coli usually outcompetes S. cerevisiae in co-culture, a few populations evolved stable coexistence after ~1000 generations of coevolution. We sequenced S. cerevisiae and E. coli populations, identified multi-hit genes, and engineered alleles from these genes into several genetic backgrounds, finding that some mutations modified interactions between E. coli and S. cerevisiae. Together, our data demonstrate that coexistence can evolve, de novo, from intense competition between two species with no history of coevolution.


Asunto(s)
Escherichia coli , Saccharomyces cerevisiae , Evolución Biológica , Técnicas de Cocultivo , Escherichia coli/genética , Saccharomyces cerevisiae/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA