Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Microbiol ; 205(9): 311, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37598385

RESUMEN

Fungal infections pose a significant threat to aquaculture, causing substantial economic losses and ecological disruptions. The common carp (Cyprinus carpio), as a crucial farmed fish, requires in-depth research to uncover the underlying fungal pathogens affecting its health. In this study, we analyzed 150 samples of C. carpio to identify the fungal pathogens responsible for the infections based on clinical signs and symptoms. Further, we assessed fungal diversity and prevalence in the infected fish. The infected fish exhibited varying degrees of gross pathogenicity, with fins and skin heavily affected, intermediate infection observed in the head and gills, and the least infection found in the operculum. Morphological examination revealed distinct characteristics such as necrosis, lesions on the skin, fins, and gills, as well as loss of scales, hemorrhagic lesions, and red spots. Furthermore, the presence of gray and white cottony patches on the body confirmed ascomycete and zygomycete infections, while a dark white cottony mass indicated phycomycete infection. Some fish exhibited severe fungal infections, presenting prominently curved spines and necrosis with red spots on the skin. These isolates belonged to various fungal groups, including ascomycetes, zygomycetes, phycomycetes, deuteromycetes, and basidiomycetes. Among these, Fusarium oxysporum emerged as the most prevalent fungal pathogen, followed by Fusarium solani, Saprolegnia delica, and Saprolegnia parasitica. Molecular identification based on ITS and LSU rRNA sequences confirmed the presence of Saprolegnia delica, Mucor hiemalis, Coniothyrium telephii, Rhodotorula mucilaginosa, Penicillium cellarum, and Fusarium californicum in the fish samples. Phylogenetic analysis further supported the morphological and molecular data, providing insights into the relationship between the isolated fungal strains and known species from various geographical regions. Our study enhances our understanding of the diversity and prevalence of fish fungal pathogens in common carp, emphasizing the significance of employing molecular techniques for accurate identification. These comprehensive findings offer essential insights into the impact of fungal infections on common carp populations, laying the groundwork for targeted control measures to mitigate their effects on global aquaculture.


Asunto(s)
Carpas , Animales , Filogenia , Piel , Acuicultura , Granjas
2.
Microb Pathog ; 114: 50-56, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29180291

RESUMEN

Antimicrobial peptides (AMPs) are generally considered as an essential component of innate immunity, thereby providing the first line of defense against wide range of pathogens. In addition, they can also kill the pathogens which are generally resistant to number of antibiotics, thereby providing the avenues for the development of future therapeutic agents. Fishes are constantly challenged by variety of pathogens which not only shows detrimental effect on their health but also increases risk of becoming resistant to conventional antibiotics. As fishes rely more on innate immunity, AMPs can serve as a potential defensive weapons in fishes for combating emerging devastating diseases. Generally, AMPs show multidimensional properties like rapid diffusion to the site of infection, recruitment of other immune cells to infected tissues and vigorous potential to rapidly neutralize broad range of pathogens (bacterial, fungal and viral). AMPs also exhibit diverse biological effect like endotoxin neutralization, immunomodulation and induction of angiogenesis in mammals. Due to these properties AMPs have become one of the most promising therapeutic agents to be studied. Till date, many AMPs have been isolated from the fishes but not fully characterized at molecular level. This review provides an overview of the structures, functions, and putative mechanisms of major families of fish AMPs. Further, we also highlighted how fish AMPs can be used as a novel therapeutic tool which is the theme of future research in drug development.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/inmunología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Peces/inmunología , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Péptidos Catiónicos Antimicrobianos/genética , Bacterias/efectos de los fármacos , Descubrimiento de Drogas , Peces/genética , Hongos/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Inmunomodulación , Virus/efectos de los fármacos
3.
Dev Comp Immunol ; 153: 105135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38185264

RESUMEN

This study aimed to explore the antimicrobic potential of mucus samples collected from Cyprinus carpio and identify the specific antimicrobial peptides responsible for its activity. The crude extract was tested against various bacterial and fungal pathogens, and its protein content and profile were analyzed. Purification steps, including gel filtration chromatography, were employed to isolate the most active fraction (peak IV), which was further identified via liquid chromatography and mass spectroscopy. The results revealed varying degrees of antimicrobial activity of the crude extract against different bacterial and fungal strains, with Leclercia adecarboxylata, Candida glabrata, and Candida parapsilosis showing the highest susceptibility. SDS-PAGE analysis demonstrated the existence of multiple low molecular weight protein bands in the crude extract, while fraction IV obtained from gel filtration chromatography exhibited the strongest antimicrobial activity. Peak IV displayed a range of minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentration (MFC) values against the tested pathogens, spanning from 0.038 to 4.960 mg/mL. Further investigation identified the purified peptide derived from peak IV as G-type lysozyme 2, characterized by a molecular weight of 21 kDa. These findings shed light on the existence of a highly effective antimicrobial peptide, G-type lysozyme 2, within the mucus of Cyprinus carpio. This peptide demonstrates notable activity against diverse bacterial and fungal pathogens. The insights from this study enhance our understanding of the fish's antimicrobial defense mechanisms and hold promise for developing novel antimicrobial agents.


Asunto(s)
Antiinfecciosos , Carpas , Animales , Muramidasa , Antiinfecciosos/farmacología , Bacterias , Péptidos/farmacología , Mezclas Complejas/análisis , Mezclas Complejas/farmacología , Moco , Pruebas de Sensibilidad Microbiana
4.
Artículo en Inglés | MEDLINE | ID: mdl-29867778

RESUMEN

Diabetes is a global epidemic problem growing exponentially in Asian countries posing a serious threat. Among diabetes, maturity-onset diabetes of the young (MODY) is a heterogeneous group of monogenic disorders that occurs due to ß cell dysfunction. Genetic defects in the pancreatic ß-cells result in the decrease of insulin production required for glucose utilization thereby lead to early-onset diabetes (often <25 years). It is generally considered as non-insulin dependent form of diabetes and comprises of 1-5% of total diabetes. Till date, 14 genes have been identified and mutation in them may lead to MODY. Different genetic testing methodologies like linkage analysis, restriction fragment length polymorphism, and DNA sequencing are used for the accurate and correct investigation of gene mutations associated with MODY. The next-generation sequencing has emerged as one of the most promising and effective tools to identify novel mutated genes related to MODY. Diagnosis of MODY is mainly relying on the sequential screening of the three marker genes like hepatocyte nuclear factor 1 alpha (HNF1α), hepatocyte nuclear factor 4 alpha (HNF4α), and glucokinase (GCK). Interestingly, MODY patients can be managed by diet alone for many years and may also require minimal doses of sulfonylureas. The primary objective of this article is to provide a review on current status of MODY, its prevalence, genetic testing/diagnosis, possible treatment, and future perspective.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA