Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Malar J ; 20(1): 107, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608015

RESUMEN

BACKGROUND: The ongoing global malaria eradication campaign requires development of potent, safe, and cost-effective drugs lacking cross-resistance with existing chemotherapies. One critical step in drug development is selecting a suitable clinical candidate from late leads. The process used to select the clinical candidate SJ733 from two potent dihydroisoquinolone (DHIQ) late leads, SJ733 and SJ311, based on their physicochemical, pharmacokinetic (PK), and toxicity profiles is described. METHODS: The compounds were tested to define their physicochemical properties including kinetic and thermodynamic solubility, partition coefficient, permeability, ionization constant, and binding to plasma proteins. Metabolic stability was assessed in both microsomes and hepatocytes derived from mice, rats, dogs, and humans. Cytochrome P450 inhibition was assessed using recombinant human cytochrome enzymes. The pharmacokinetic profiles of single intravenous or oral doses were investigated in mice, rats, and dogs. RESULTS: Although both compounds displayed similar physicochemical properties, SJ733 was more permeable but metabolically less stable than SJ311 in vitro. Single dose PK studies of SJ733 in mice, rats, and dogs demonstrated appreciable oral bioavailability (60-100%), whereas SJ311 had lower oral bioavailability (mice 23%, rats 40%) and higher renal clearance (10-30 fold higher than SJ733 in rats and dogs), suggesting less favorable exposure in humans. SJ311 also displayed a narrower range of dose-proportional exposure, with plasma exposure flattening at doses above 200 mg/kg. CONCLUSION: SJ733 was chosen as the candidate based on a more favorable dose proportionality of exposure and stronger expectation of the ability to justify a strong therapeutic index to regulators.


Asunto(s)
Antimaláricos/farmacología , Isoquinolinas/farmacología , Animales , Antimaláricos/farmacocinética , Antimaláricos/toxicidad , Disponibilidad Biológica , Perros , Hepatocitos/efectos de los fármacos , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/toxicidad , Humanos , Isoquinolinas/farmacocinética , Isoquinolinas/toxicidad , Ratones , Microsomas Hepáticos/efectos de los fármacos , Ratas
2.
Bioorg Med Chem ; 37: 116116, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799173

RESUMEN

The K+-sparing diuretic amiloride elicits anticancer activities in multiple animal models. During our recent medicinal chemistry campaign aiming to identify amiloride analogs with improved properties for potential use in cancer, we discovered novel 6-(hetero)aryl-substituted amiloride and 5-(N,N-hexamethylene)amiloride (HMA) analogs with up to 100-fold higher potencies than the parent compounds against urokinase plasminogen activator (uPA), one of amiloride's putative anticancer targets, and no diuretic or antikaliuretic effects. Here, we report the systematic evaluation of structure-property relationships (lipophilicity, aqueous solubility and in vitro metabolic stability in human and mouse liver microsomes) in twelve matched pair analogs selected from our 6-substituted amiloride and HMA libraries. Mouse plasma stability, plasma protein binding, Caco-2 cell permeability, cardiac ion channel activity and pharmacokinetics in mice (PO and IV) and rats (IV) are described alongside amiloride and HMA comparators for a subset of the four most promising matched-pair analogs. The findings combined with earlier uPA activity/selectivity and other data ultimately drove selection of two analogs (AA1-39 and AA1-41) that showed efficacy in separate mouse cancer metastasis studies.


Asunto(s)
Amilorida/análogos & derivados , Amilorida/farmacología , Antineoplásicos/farmacología , Amilorida/farmacocinética , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Células CACO-2 , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Masculino , Ratones Endogámicos BALB C , Microsomas Hepáticos/efectos de los fármacos , Estructura Molecular , Ratas Sprague-Dawley , Relación Estructura-Actividad
3.
Malar J ; 19(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898492

RESUMEN

BACKGROUND: Modelling and simulation are being increasingly utilized to support the discovery and development of new anti-malarial drugs. These approaches require reliable in vitro data for physicochemical properties, permeability, binding, intrinsic clearance and cytochrome P450 inhibition. This work was conducted to generate an in vitro data toolbox using standardized methods for a set of 45 anti-malarial drugs and to assess changes in physicochemical properties in relation to changing target product and candidate profiles. METHODS: Ionization constants were determined by potentiometric titration and partition coefficients were measured using a shake-flask method. Solubility was assessed in biorelevant media and permeability coefficients and efflux ratios were determined using Caco-2 cell monolayers. Binding to plasma and media proteins was measured using either ultracentrifugation or rapid equilibrium dialysis. Metabolic stability and cytochrome P450 inhibition were assessed using human liver microsomes. Sample analysis was conducted by LC-MS/MS. RESULTS: Both solubility and fraction unbound decreased, and permeability and unbound intrinsic clearance increased, with increasing Log D7.4. In general, development compounds were somewhat more lipophilic than legacy drugs. For many compounds, permeability and protein binding were challenging to assess and both required the use of experimental conditions that minimized the impact of non-specific binding. Intrinsic clearance in human liver microsomes was varied across the data set and several compounds exhibited no measurable substrate loss under the conditions used. Inhibition of cytochrome P450 enzymes was minimal for most compounds. CONCLUSIONS: This is the first data set to describe in vitro properties for 45 legacy and development anti-malarial drugs. The studies identified several practical methodological issues common to many of the more lipophilic compounds and highlighted areas which require more work to customize experimental conditions for compounds being designed to meet the new target product profiles. The dataset will be a valuable tool for malaria researchers aiming to develop PBPK models for the prediction of human PK properties and/or drug-drug interactions. Furthermore, generation of this comprehensive data set within a single laboratory allows direct comparison of properties across a large dataset and evaluation of changing property trends that have occurred over time with changing target product and candidate profiles.


Asunto(s)
Antimaláricos/metabolismo , Antimaláricos/farmacología , Desarrollo de Medicamentos , Descubrimiento de Drogas , Antimaláricos/sangre , Antimaláricos/normas , Células CACO-2 , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/metabolismo , Interacciones Farmacológicas , Humanos , Cinética , Microsomas Hepáticos , Permeabilidad , Unión Proteica , Solubilidad , Espectrometría de Masas en Tándem
4.
Mol Pharm ; 15(12): 5678-5696, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30376336

RESUMEN

The absolute bioavailability of many small molecule kinase inhibitors (smKIs) is low. The reasons for low bioavailability are multifaceted and include constraints due to first pass metabolism and poor absorption. For smKIs where absorption limits oral bioavailability, low aqueous solubility and high lipophilicity, often in combination with high-dose requirements have been implicated in low and variable absorption, food-effects, and absorption-related drug-drug interactions. The current study has evaluated whether preparation of smKIs as lipophilic salts/ionic liquids in combination with coadministration with lipid-based formulations is able to enhance absorption for examples of this compound class. Lipophilic (docusate) salt forms of erlotinib, gefitinib, ceritinib, and cabozantinib (as example smKIs demonstrating low aqueous solubility and high lipophilicity) were prepared and isolated as workable powder solids. In each case, the lipophilic salt exhibited high and significantly enhanced solubility in lipidic excipients (>100 mg/g) when compared to the free base or commercial salt form. Isolation as the lipophilic salt facilitated smKI loading in model lipid-based formulations at high concentration, increased in vitro solubilization at gastric and intestinal pH and in some cases increased oral absorption (∼2-fold for cabozantinib formulations in rats). Application of a lipophilic salt approach can therefore facilitate the use of lipid-based formulations for examples of the smKI compound class where low solubility limits absorption and is a risk factor for increased variability due to food-effects.


Asunto(s)
Composición de Medicamentos/métodos , Excipientes/química , Inhibidores de Proteínas Quinasas/farmacocinética , Administración Oral , Animales , Disponibilidad Biológica , Evaluación Preclínica de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Absorción Intestinal , Lípidos/química , Masculino , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/química , Ratas , Ratas Sprague-Dawley , Sales (Química)/química , Solubilidad , Agua/química
5.
Pharm Res ; 35(11): 210, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30225649

RESUMEN

PURPOSE: To examine the utility of human plasma as an assay medium in Caco-2 permeability studies to overcome poor mass balance and inadequate sink conditions frequently encountered with lipophilic compounds. METHODS: Caco-2 permeability was assessed for reference compounds with known transport mechanisms using either pH 7.4 buffer or human plasma as the assay medium in both the apical and basolateral chambers. When using plasma, Papp values were corrected for the unbound fraction in the donor chamber. The utility of the approach was assessed by measuring the permeability of selected antimalarial compounds using the two assay media. RESULTS: Caco-2 cell monolayer integrity and P-gp transporter function were unaffected by the presence of human plasma in the donor and acceptor chambers. For many of the reference compounds having good mass balance with buffer as the medium, higher Papp values were observed with plasma, likely due to improved acceptor sink conditions. The lipophilic antimalarial compounds exhibited low mass balance with buffer, however the use of plasma markedly improved mass balance allowing the determination of more reliable Papp values. CONCLUSIONS: The results support the utility of human plasma as an alternate Caco-2 assay medium to improve mass balance and permeability measurements for lipophilic compounds.


Asunto(s)
Antimaláricos/farmacocinética , Células Epiteliales/metabolismo , Absorción Intestinal , Plasma/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Antimaláricos/química , Proteínas Sanguíneas/metabolismo , Células CACO-2 , Técnicas de Cultivo de Célula , Humanos , Lípidos/química , Lípidos/farmacocinética , Permeabilidad , Farmacocinética
6.
Bioorg Med Chem Lett ; 28(23-24): 3648-3651, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389288

RESUMEN

Urea carboxylic acids, products of aryl hydantoin hydrolysis, were recently identified as a new antischistosomal chemotype. We now describe a baseline structure-activity relationship (SAR) for this compound series. With one exception, analogs of lead urea carboxylic acid 2 were quite polar with Log D7.4 values ranging from -1.9 to 1.8, had high aqueous solubilities in the range of 25-100 µg/mL, and were metabolically stable. None of the compounds had measurable in vitro antischistosomal activity or cytotoxicity, but four of these had moderate worm burden reduction (WBR) values of 42-70% when they were administered as single 100 mg/kg oral doses to S. mansoni-infected mice. These data indicate that with the exception of the gem-dimethyl substructure and the distal nitrogen atom of the urea functional group, the rest of the structure of 2 is required for in vivo antischistosomal activity.


Asunto(s)
Ácidos Carboxílicos/química , Esquistosomicidas/química , Urea/química , Animales , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/farmacología , Ácidos Carboxílicos/uso terapéutico , Semivida , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Schistosoma mansoni/efectos de los fármacos , Esquistosomiasis mansoni/tratamiento farmacológico , Esquistosomiasis mansoni/veterinaria , Esquistosomicidas/metabolismo , Esquistosomicidas/farmacología , Esquistosomicidas/uso terapéutico , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 28(3): 244-248, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29317164

RESUMEN

N,N'-Diaryl ureas have recently emerged as a new antischistosomal chemotype. We now describe physicochemical profiling, in vitro ADME, plasma exposure, and ex vivo and in vivo activities against Schistosoma mansoni for twenty new N,N'-diaryl ureas designed primarily to increase aqueous solubility, but also to maximize structural diversity. Replacement of one of the 4-fluoro-3-trifluoromethylphenyl substructures of lead N,N'-diaryl urea 1 with azaheterocycles and benzoic acids, benzamides, or benzonitriles decreased lipophilicity, and in most cases, increased aqueous solubility. There was no clear relationship between lipophilicity and metabolic stability, although all compounds with 3-trifluoromethyl-4-pyridyl substructures were metabolically stable. N,N'-diaryl ureas containing 4-fluoro-3-trifluoromethylphenyl, 3-trifluoromethyl-4-pyridyl, 2,2-difluorobenzodioxole, or 4-benzonitrile substructures had high activity against ex vivo S. mansoni and relatively low cytotoxicity. N,N-diaryl ureas with 3-trifluoromethyl-4-pyridyl and 2,2-difluorobenzodioxole substructures had the highest exposures whereas those with 4-fluoro-3-trifluoromethylphenyl substructures had the best in vivo antischistosomal activities. There was no direct correlation between compound exposure and in vivo activity.


Asunto(s)
Compuestos de Fenilurea/farmacología , Esquistosomicidas/farmacología , Animales , Línea Celular , Humanos , Masculino , Ratones , Microsomas Hepáticos/metabolismo , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Compuestos de Fenilurea/síntesis química , Compuestos de Fenilurea/química , Compuestos de Fenilurea/toxicidad , Schistosoma mansoni/efectos de los fármacos , Esquistosomicidas/síntesis química , Esquistosomicidas/química , Esquistosomicidas/toxicidad , Solubilidad , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 26(11): 2996-3005, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29779669

RESUMEN

A series of aryl carboxamide and benzylamino dispiro 1,2,4,5-tetraoxane analogues have been designed and synthesized in a short synthetic sequence from readily available starting materials. From this series of endoperoxides, molecules with in vitro IC50s versus Plasmodium falciparum (3D7) as low as 0.84 nM were identified. Based on an assessment of blood stability and in vitro microsomal stability, N205 (10a) was selected for rodent pharmacokinetic and in vivo antimalarial efficacy studies in the mouse Plasmodium berghei and Plasmodium falciparum Pf3D70087/N9 severe combined immunodeficiency (SCID) mouse models. The results indicate that the 4-benzylamino derivatives have excellent profiles with a representative of this series, N205, an excellent starting point for further lead optimization studies.


Asunto(s)
Antimaláricos/uso terapéutico , Malaria , Morfolinas/síntesis química , Plasmodium falciparum , Tetraoxanos/síntesis química , Administración Oral , Animales , Antimaláricos/síntesis química , Antimaláricos/química , Modelos Animales de Enfermedad , Estabilidad de Medicamentos , Humanos , Concentración 50 Inhibidora , Malaria/tratamiento farmacológico , Ratones , Morfolinas/química , Morfolinas/uso terapéutico , Plasmodium falciparum/efectos de los fármacos , Ratas , Tetraoxanos/química , Tetraoxanos/uso terapéutico
9.
Proc Natl Acad Sci U S A ; 111(50): E5455-62, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453091

RESUMEN

Drug discovery for malaria has been transformed in the last 5 years by the discovery of many new lead compounds identified by phenotypic screening. The process of developing these compounds as drug leads and studying the cellular responses they induce is revealing new targets that regulate key processes in the Plasmodium parasites that cause malaria. We disclose herein that the clinical candidate (+)-SJ733 acts upon one of these targets, ATP4. ATP4 is thought to be a cation-transporting ATPase responsible for maintaining low intracellular Na(+) levels in the parasite. Treatment of parasitized erythrocytes with (+)-SJ733 in vitro caused a rapid perturbation of Na(+) homeostasis in the parasite. This perturbation was followed by profound physical changes in the infected cells, including increased membrane rigidity and externalization of phosphatidylserine, consistent with eryptosis (erythrocyte suicide) or senescence. These changes are proposed to underpin the rapid (+)-SJ733-induced clearance of parasites seen in vivo. Plasmodium falciparum ATPase 4 (pfatp4) mutations that confer resistance to (+)-SJ733 carry a high fitness cost. The speed with which (+)-SJ733 kills parasites and the high fitness cost associated with resistance-conferring mutations appear to slow and suppress the selection of highly drug-resistant mutants in vivo. Together, our data suggest that inhibitors of PfATP4 have highly attractive features for fast-acting antimalarials to be used in the global eradication campaign.


Asunto(s)
Antimaláricos/farmacología , ATPasas Transportadoras de Calcio/metabolismo , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Isoquinolinas/farmacología , Malaria/tratamiento farmacológico , Modelos Moleculares , Plasmodium/efectos de los fármacos , Antimaláricos/farmacocinética , ATPasas Transportadoras de Calcio/genética , Senescencia Celular/efectos de los fármacos , Descubrimiento de Drogas , Resistencia a Medicamentos/genética , Eritrocitos/efectos de los fármacos , Citometría de Flujo , Compuestos Heterocíclicos de 4 o más Anillos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Isoquinolinas/farmacocinética , Estructura Molecular
10.
J Pharmacol Exp Ther ; 359(2): 354-365, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27630144

RESUMEN

Current antipsychotics are effective in treating the positive symptoms associated with schizophrenia, but they remain suboptimal in targeting cognitive dysfunction. Recent studies have suggested that positive allosteric modulation of the M1 muscarinic acetylcholine receptor (mAChR) may provide a novel means of improving cognition. However, very little is known about the potential of combination therapies in extending coverage across schizophrenic symptom domains. This study investigated the effect of the M1 mAChR positive allosteric modulator BQCA [1-(4-methoxybenzyl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid], alone or in combination with haloperidol (a first-generation antipsychotic), clozapine (a second-generation atypical antipsychotic), or aripiprazole (a third-generation atypical antipsychotic), in reversing deficits in sensorimotor gating and spatial memory induced by the N-methyl-d-aspartate receptor antagonist, MK-801 [(5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine]. Sensorimotor gating and spatial memory induction are two models that represent aspects of schizophrenia modeled in rodents. In prepulse inhibition (an operational measure of sensorimotor gating), BQCA alone had minimal effects but exhibited different levels of efficacy in reversing MK-801-induced prepulse inhibition disruptions when combined with a subeffective dose of each of the three (currently prescribed) antipsychotics. Furthermore, the combined effect of BQCA and clozapine was absent in M1-/- mice. Interestingly, although BQCA alone had no effect in reversing MK-801-induced memory impairments in a Y-maze spatial test, we observed a reversal upon the combination of BQCA with atypical antipsychotics, but not with haloperidol. These findings provide proof of concept that a judicious combination of existing antipsychotics with a selective M1 mAChR positive allosteric modulator can extend antipsychotic efficacy in glutamatergic deficit models of behavior.


Asunto(s)
Antipsicóticos/farmacología , Conducta Animal/efectos de los fármacos , Glutamatos/metabolismo , Quinolinas/farmacología , Receptor Muscarínico M1/metabolismo , Acetilcolina/metabolismo , Regulación Alostérica/efectos de los fármacos , Animales , Células CHO , Cricetinae , Cricetulus , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Inhibición Prepulso/efectos de los fármacos , Receptor Muscarínico M1/química
11.
Antimicrob Agents Chemother ; 59(6): 3645-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25845874

RESUMEN

With the aim of improving the available drugs for the treatment of Chagas disease, individual enantiomers of nifurtimox were characterized. The results indicate that the enantiomers are equivalent in their in vitro activity against a panel of Trypanosoma cruzi strains; in vivo efficacy in a murine model of Chagas disease; in vitro toxicity and absorption, distribution, metabolism, and excretion characteristics; and in vivo pharmacokinetic properties. There is unlikely to be any therapeutic benefit of an individual nifurtimox enantiomer over the racemic mixture.


Asunto(s)
Nifurtimox/química , Nifurtimox/farmacocinética , Tripanocidas/química , Tripanocidas/farmacocinética , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Femenino , Humanos , Masculino , Ratones , Nifurtimox/uso terapéutico , Ratas , Ratas Sprague-Dawley , Estereoisomerismo , Tripanocidas/efectos adversos , Tripanocidas/uso terapéutico
12.
Antimicrob Agents Chemother ; 58(8): 4362-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841257

RESUMEN

This study was designed to verify the in vivo efficacy of sulfoxide and sulfone fexinidazole metabolites following oral administration in a murine model of Chagas disease. Female Swiss mice infected with the Y strain of Trypanosoma cruzi were treated orally once per day with each metabolite at doses of 10 to 100 mg/kg of body weight for a period of 20 days. Parasitemia was monitored throughout, and cures were detected by parasitological and PCR assays. The results were compared with those achieved with benznidazole treatment at the same doses. Fexinidazole metabolites were effective in reducing the numbers of circulating parasites and protecting mice against death, compared with untreated mice, but without providing cures at daily doses of 10 and 25 mg/kg. Both metabolites were effective in curing mice at 50 mg/kg/day (30% to 40%) and 100 mg/kg/day (100%). In the benznidazole-treated group, parasitological cure was detected only in animals treated with the higher dose of 100 mg/kg/day (80%). Single-dose pharmacokinetic parameters for each metabolite were obtained from a parallel group of uninfected mice and were used to estimate the profiles following repeated doses. Pharmacokinetic data suggested that biological efficacy most likely resides with the sulfone metabolite (or subsequent reactive metabolites formed following reduction of the nitro group) following administration of either the sulfoxide or the sulfone and that prolonged plasma exposure over the 24-h dosing window is required to achieve high cure rates. Fexinidazole metabolites were effective in treating T. cruzi in a mouse model of acute infection, with cure rates superior to those achieved with either fexinidazole itself or benznidazole.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/farmacología , Sulfonas/farmacología , Sulfóxidos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Administración Oral , Animales , Biotransformación , Enfermedad de Chagas/mortalidad , Enfermedad de Chagas/parasitología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Ratones , Nitroimidazoles/farmacocinética , Sulfonas/metabolismo , Sulfóxidos/metabolismo , Análisis de Supervivencia , Tripanocidas/farmacocinética , Trypanosoma cruzi/crecimiento & desarrollo
13.
Proc Natl Acad Sci U S A ; 108(11): 4400-5, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21300861

RESUMEN

Ozonide OZ439 is a synthetic peroxide antimalarial drug candidate designed to provide a single-dose oral cure in humans. OZ439 has successfully completed Phase I clinical trials, where it was shown to be safe at doses up to 1,600 mg and is currently undergoing Phase IIa trials in malaria patients. Herein, we describe the discovery of OZ439 and the exceptional antimalarial and pharmacokinetic properties that led to its selection as a clinical drug development candidate. In vitro, OZ439 is fast-acting against all asexual erythrocytic Plasmodium falciparum stages with IC(50) values comparable to those for the clinically used artemisinin derivatives. Unlike all other synthetic peroxides and semisynthetic artemisinin derivatives, OZ439 completely cures Plasmodium berghei-infected mice with a single oral dose of 20 mg/kg and exhibits prophylactic activity superior to that of the benchmark chemoprophylactic agent, mefloquine. Compared with other peroxide-containing antimalarial agents, such as the artemisinin derivatives and the first-generation ozonide OZ277, OZ439 exhibits a substantial increase in the pharmacokinetic half-life and blood concentration versus time profile in three preclinical species. The outstanding efficacy and prolonged blood concentrations of OZ439 are the result of a design strategy that stabilizes the intrinsically unstable pharmacophoric peroxide bond, thereby reducing clearance yet maintaining the necessary Fe(II)-reactivity to elicit parasite death.


Asunto(s)
Adamantano/análogos & derivados , Antimaláricos/administración & dosificación , Antimaláricos/uso terapéutico , Compuestos Heterocíclicos/administración & dosificación , Compuestos Heterocíclicos/uso terapéutico , Malaria/tratamiento farmacológico , Peróxidos/administración & dosificación , Peróxidos/uso terapéutico , Adamantano/administración & dosificación , Adamantano/química , Adamantano/farmacocinética , Adamantano/uso terapéutico , Animales , Antimaláricos/química , Antimaláricos/farmacocinética , Artemisininas/química , Artemisininas/farmacología , Artemisininas/uso terapéutico , Relación Dosis-Respuesta a Droga , Estabilidad de Medicamentos , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacocinética , Hierro/metabolismo , Malaria/parasitología , Masculino , Ratones , Peróxidos/química , Peróxidos/farmacocinética , Plasmodium berghei/fisiología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Resultado del Tratamiento
14.
Bioorg Med Chem Lett ; 23(2): 455-9, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23245512

RESUMEN

A series of novel glycopyranosyl azides were synthesised wherein the carbohydrate moiety was peracylated with four acetyl, propionyl, butanoyl, pentanoyl (valeryl) or 3-methylbutanoyl (isovaleryl) ester linked groups. A panel of glycoconjugates was synthesised from these glycopyranosyl azides using copper-catalysed azide-alkyne cycloaddition. The in vitro metabolic stability, plasma stability and plasma protein binding was then measured to establish the impact of the different acyl group when presented on a common scaffold. The acetyl, propionyl and butanoyl esters exhibited metabolism consistent with esterase processing, and various mono-, di- and tri-acylated hydrolysis products as well as the fully hydrolysed compound were detected. In contrast, the pentanoyl and 3-methylbutanoyl esters were stable.


Asunto(s)
Azidas/síntesis química , Glicoconjugados/síntesis química , Acilación , Azidas/química , Azidas/farmacología , Catálisis , Cobre/química , Estabilidad de Medicamentos , Glicoconjugados/química , Glicoconjugados/farmacología , Humanos , Unión Proteica , Albúmina Sérica/química
15.
Bioorg Med Chem Lett ; 23(24): 6868-73, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24169234

RESUMEN

Cinnamoylanthranilates including tranilast have been identified as promising antifibrotics that can reduce fibrosis occurring in the kidney during diabetes, thereby delaying and/or preventing kidney dysfunction. Structure-activity relationships aimed at improving potency and metabolic stability have led to the discovery of FT061. This compound, which bears a bis-difluoromethoxy catechol, attenuates TGF-ß-stimulated production of collagen in cultured renal mesangial cells (approx 50% at 3 µM). When dosed orally at 20mg/kg to male Sprague Dawley rats, FT061 exhibited a high bioavailability (73%), Cmax of 200 µM and Tmax of 150 min, and a half-life of 5.4h. FT061 reduced albuminuria when orally dosed in rats at 200 mg kg/day in a late intervention study of a rat model of progressive diabetic nephropathy.


Asunto(s)
Albuminuria/tratamiento farmacológico , Antifibrinolíticos/uso terapéutico , Ácidos Cafeicos/química , ortoaminobenzoatos/química , Administración Oral , Albuminuria/complicaciones , Albuminuria/metabolismo , Animales , Antifibrinolíticos/química , Antifibrinolíticos/farmacocinética , Ácidos Cafeicos/farmacocinética , Ácidos Cafeicos/uso terapéutico , Células Cultivadas , Colágeno/metabolismo , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Semivida , Masculino , Células Mesangiales/efectos de los fármacos , Células Mesangiales/metabolismo , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad , ortoaminobenzoatos/farmacocinética , ortoaminobenzoatos/farmacología , ortoaminobenzoatos/uso terapéutico
16.
Bioorg Med Chem ; 21(7): 1756-63, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23462713

RESUMEN

A scaffold hopping exercise undertaken to expand the structural diversity of the fenarimol series of anti-Trypanosoma cruzi (T. cruzi) compounds led to preparation of simple 1-[phenyl(pyridin-3-yl)methyl]piperazinyl analogues of fenarimol which were investigated for their ability to inhibit T. cruzi in vitro in a whole organism assay. A range of compounds bearing amide, sulfonamide, carbamate/carbonate and aryl moieties exhibited low nM activities and two analogues were further studied for in vivo efficacy in a mouse model of T. cruzi infection. One compound, the citrate salt of 37, was efficacious in a mouse model of acute T. cruzi infection after once daily oral dosing at 20, 50 and 100 mg/kg for 5 days.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Piperazinas/química , Piperazinas/uso terapéutico , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Administración Oral , Animales , Enfermedad de Chagas/parasitología , Diseño de Fármacos , Humanos , Ratones , Piperazina , Piperazinas/administración & dosificación , Piperazinas/farmacología , Pirimidinas/administración & dosificación , Pirimidinas/química , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Relación Estructura-Actividad , Tripanocidas/administración & dosificación , Tripanocidas/farmacología
17.
Pharmaceutics ; 15(7)2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37514160

RESUMEN

N-(4-hydroxyphenyl) retinamide (4-HPR, or fenretinide) has promising in vitro and in vivo antiviral activity against a range of flaviviruses and an established safety record, but there are challenges to its clinical use. This study evaluated the in vivo exposure profile of a 4-HPR dosage regime previously shown to be effective in a mouse model of severe dengue virus (DENV) infection, comparing it to an existing formulation for human clinical use for other indications and developed/characterised self-emulsifying lipid-based formulations of 4-HPR to enhance 4-HPR in vivo exposure. Pharmacokinetic (PK) analysis comprising single-dose oral and IV plasma concentration-time profiles was performed in mice; equilibrium solubility testing of 4-HPR in a range of lipids, surfactants and cosolvents was used to inform formulation approaches, with lead formulation candidates digested in vitro to analyse solubilisation/precipitation prior to in vivo testing. PK analysis suggested that effective plasma concentrations could be achieved with the clinical formulation, while novel lipid-based formulations achieved > 3-fold improvement. Additionally, 4-HPR exposure was found to be limited by both solubility and first-pass intestinal elimination but could be improved through inhibition of cytochrome P450 (CYP) metabolism. Simulated exposure profiles suggest that a b.i.d dosage regime is likely to maintain 4-HPR above the minimum effective plasma concentration for anti-DENV activity using the clinical formulation, with new formulations/CYP inhibition viable options to increase exposure in the future.

18.
Eur J Med Chem ; 258: 115588, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37423123

RESUMEN

Translation of muscarinic acetylcholine receptor (mAChR) agonists into clinically used therapeutic agents has been difficult due to their poor subtype selectivity. M4 mAChR subtype-selective positive allosteric modulators (PAMs) may provide better therapeutic outcomes, hence investigating their detailed pharmacological properties is crucial to advancing them into the clinic. Herein, we report the synthesis and comprehensive pharmacological evaluation of M4 mAChR PAMs structurally related to 1e, Me-C-c, [11C]MK-6884 and [18F]12. Our results show that small structural changes to the PAMs can result in pronounced differences to baseline, potency (pEC50) and maximum effect (Emax) measures in cAMP assays when compared to the endogenous ligand acetylcholine (ACh) without the addition of the PAMs. Eight selected PAMs were further assessed to determine their binding affinity and potential signalling bias profile between cAMP and ß-arrestin 2 recruitment. These rigorous analyses resulted in the discovery of the novel PAMs, 6k and 6l, which exhibit improved allosteric properties compared to the lead compound, and probative in vivo exposure studies in mice confirmed that they maintain the ability to cross the blood-brain barrier, making them more suitable for future preclinical assessment.


Asunto(s)
Acetilcolina , Receptores Muscarínicos , Ratones , Animales , Cricetinae , Regulación Alostérica , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Piridinas/farmacología , Piridinas/química , Transducción de Señal , Células CHO
19.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091406

RESUMEN

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Asunto(s)
Leishmaniasis Visceral , Leishmaniasis , Ratas , Animales , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Modelos Animales de Enfermedad
20.
Antimicrob Agents Chemother ; 56(9): 4914-21, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22777048

RESUMEN

Chagas disease, caused by the protozoan pathogen Trypanosoma cruzi, remains a challenging infection due to the unavailability of safe and efficacious drugs. Inhibitors of the trypanosome sterol 14α-demethylase enzyme (CYP51), including azole antifungal drugs, are promising candidates for development as anti-Chagas disease drugs. Posaconazole is under clinical investigation for Chagas disease, although the high cost of this drug may limit its widespread use. We have previously reported that the human protein farnesyltransferase (PFT) inhibitor tipifarnib has potent anti-T. cruzi activity by inhibiting the CYP51 enzyme. Furthermore, we have developed analogs that minimize the PFT-inhibitory activity and enhance the CYP51 inhibition. In this paper, we describe the efficacy of the lead tipifarnib analog compared to that of posaconazole in a murine model of T. cruzi infection. The plasma exposure profiles for each compound following a single oral dose in mice and estimated exposure parameters after repeated twice-daily dosing for 20 days are also presented. The lead tipifarnib analog had potent suppressive activity on parasitemia in mice but was unsuccessful at curing mice, whereas posaconazole as well as benznidazole cured 3 of 5 and 4 of 6 mice, respectively. The efficacy results are consistent with posaconazole having substantially higher predicted exposure than that of the tipifarnib analog after repeat twice-daily administration. Further changes to the tipifarnib analogs to reduce plasma clearance are therefore likely to be important. A crystal structure of a trypanosomal CYP51 bound to a tipifarnib analog is reported here and provides new insights to guide structure-based drug design for further optimized compounds.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/administración & dosificación , Enfermedad de Chagas/tratamiento farmacológico , Inhibidores Enzimáticos del Citocromo P-450 , Quinolonas/administración & dosificación , Tripanocidas/administración & dosificación , Trypanosoma cruzi/efectos de los fármacos , Inhibidores de 14 alfa Desmetilasa/sangre , Inhibidores de 14 alfa Desmetilasa/síntesis química , Inhibidores de 14 alfa Desmetilasa/farmacocinética , Administración Oral , Transferasas Alquil y Aril/metabolismo , Animales , Enfermedad de Chagas/enzimología , Enfermedad de Chagas/parasitología , Cristalografía por Rayos X , Sistema Enzimático del Citocromo P-450/metabolismo , Esquema de Medicación , Femenino , Humanos , Ratones , Modelos Moleculares , Nitroimidazoles/administración & dosificación , Quinolonas/sangre , Quinolonas/síntesis química , Quinolonas/farmacocinética , Relación Estructura-Actividad , Triazoles/administración & dosificación , Triazoles/sangre , Triazoles/farmacocinética , Tripanocidas/sangre , Tripanocidas/síntesis química , Tripanocidas/farmacocinética , Trypanosoma cruzi/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA