Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Methods ; 16(11): 1119-1122, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31659327

RESUMEN

Two-photon microscopy is a mainstay technique for imaging in scattering media and normally provides frame-acquisition rates of ~10-30 Hz. To track high-speed phenomena, we created a two-photon microscope with 400 illumination beams that collectively sample 95,000-211,000 µm2 areas at rates up to 1 kHz. Using this microscope, we visualized microcirculatory flow, fast venous constrictions and neuronal Ca2+ spiking with millisecond-scale timing resolution in the brains of awake mice.


Asunto(s)
Encéfalo/irrigación sanguínea , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Animales , Calcio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Vigilia
2.
PLoS Comput Biol ; 11(3): e1004090, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25768881

RESUMEN

L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal neurons of mouse V1 using patch-clamp recordings. Using a detailed multi-compartmental model, we show this physiological setup to be well suited for coincidence detection between basal and apical tuft inputs by controlling the frequency of spike output. We further show how direct inhibition of calcium channels in the dendrites modulates such coincidence detection. To establish the singe-cell computation that this biophysics supports, we show that the combination of frequency-modulation of somatic output by tuft input and (simulated) calcium-channel blockage functionally acts as a composite sigmoidal function. Finally, we explore how this computation provides a mechanism whereby dendritic spiking contributes to orientation tuning in pyramidal neurons.


Asunto(s)
Modelos Neurológicos , Células Piramidales/fisiología , Corteza Visual/fisiología , Animales , Biología Computacional , Dendritas/fisiología , Ratones , Sinapsis/fisiología
3.
eNeuro ; 9(3)2022.
Artículo en Inglés | MEDLINE | ID: mdl-35701166

RESUMEN

The dendrites of cortical pyramidal neurons receive synaptic inputs from different pathways that are organized according to their laminar target. This architectural scheme provides cortical neurons with a spatial mechanism to separate information, which may support neural flexibility required during learning. Here, we investigated layer-specific plasticity of sensory encoding following learning by recording from two different dendritic compartments, tuft and basal dendrites, of layer 2/3 (L2/3) pyramidal neurons in the auditory cortex of mice. Following auditory fear conditioning, auditory-evoked Ca2+ responses were enhanced in tuft, but not basal, dendrites leading to increased somatic action potential output. This is in direct contrast to the long held (and debated) hypothesis that, despite extensive dendritic arbors, neurons function as a simple one-compartment model. Two computational models of varying complexity based on the experimental data illustrated that this learning-related increase of auditory responses in tuft dendrites can account for the changes in somatic output. Taken together, we illustrate that neurons do not function as a single compartment, and dendritic compartmentalization of learning-related plasticity may act to increase the computational power of pyramidal neurons.


Asunto(s)
Dendritas , Células Piramidales , Potenciales de Acción/fisiología , Animales , Dendritas/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Plasticidad Neuronal/fisiología , Neuronas , Células Piramidales/fisiología
4.
Elife ; 62017 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-29205152

RESUMEN

What can artificial intelligence learn from neuroscience, and vice versa?


Asunto(s)
Aprendizaje Profundo , Neurociencias , Inteligencia Artificial , Encéfalo , Dendritas
6.
Artículo en Inglés | MEDLINE | ID: mdl-25177288

RESUMEN

Apical and tuft dendrites of pyramidal neurons support regenerative electrical potentials, giving rise to long-lasting (approximately hundreds of milliseconds) and strong (~50 mV from rest) depolarizations. Such plateau events rely on clustered glutamatergic input, can be mediated by calcium or by NMDA currents, and often generate somatic depolarizations that last for the time course of the dendritic plateau event. We address the computational significance of such single-neuron processing via reduced but biophysically realistic modeling. We introduce a model based on two discrete integration zones, a somatic and a dendritic one, that communicate from the dendritic to the somatic compartment via a long plateau-conductance. We show principled differences in the way dendritic vs. somatic inhibition controls spike timing, and demonstrate how this could implement spike time control in the face of barrages of synaptic inputs.

7.
Nat Neurosci ; 17(3): 383-90, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487231

RESUMEN

Recent evidence in vitro suggests that the tuft dendrites of pyramidal neurons are capable of evoking local NMDA receptor-dependent electrogenesis, so-called NMDA spikes. However, it has so far proved difficult to demonstrate their existence in vivo. Moreover, it is not clear whether NMDA spikes are relevant to the output of pyramidal neurons. We found that local NMDA spikes occurred in tuft dendrites of layer 2/3 pyramidal neurons both spontaneously and following sensory input, and had a large influence on the number of output action potentials. Using two-photon activation of an intracellular caged NMDA receptor antagonist (tc-MK801), we found that isolated NMDA spikes typically occurred in multiple branches simultaneously and that sensory stimulation substantially increased their probability. Our results demonstrate that NMDA receptors have a vital role in coupling the tuft region of the layer 2/3 pyramidal neuron to the cell body, enhancing the effectiveness of layer 1 input.


Asunto(s)
Potenciales de Acción/fisiología , Células Piramidales/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Corteza Somatosensorial/fisiología , Regulación hacia Arriba/fisiología , Animales , Dendritas/metabolismo , Dendritas/fisiología , Fenómenos Electrofisiológicos/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Ratones , Técnicas de Placa-Clamp , Células Piramidales/metabolismo , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA