Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39106176

RESUMEN

Previous studies have demonstrated that the thalamus is involved in multiple functional circuits in participants with schizophrenia. However, less is known about the thalamocortical circuit in the rare subtype of early-onset schizophrenia. A total of 110 participants with early-onset schizophrenia (47 antipsychotic-naive patients) and 70 matched healthy controls were recruited and underwent resting-state functional and diffusion-weighted magnetic resonance imaging scans. A data-driven parcellation method that combined the high spatial resolution of diffusion magnetic resonance imaging and the high sensitivity of functional magnetic resonance imaging was used to divide the thalamus. Next, the functional connectivity between each thalamic subdivision and the cortex/cerebellum was investigated. Compared to healthy controls, individuals with early-onset schizophrenia exhibited hypoconnectivity between subdivisions of the thalamus and the frontoparietal network, visual network, ventral attention network, somatomotor network and cerebellum, and hyperconnectivity between subdivisions of thalamus and the parahippocampal and temporal gyrus, which were included in limbic network. The functional connectivity between the right posterior cingulate cortex and 1 subdivision of the thalamus (region of interest 1) was positively correlated with the general psychopathology scale score. This study showed that the specific thalamocortical dysconnection in individuals with early-onset schizophrenia involves the prefrontal, auditory and visual cortices, and cerebellum. This study identified thalamocortical connectivity as a potential biomarker and treatment target for early-onset schizophrenia.


Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Vías Nerviosas , Esquizofrenia , Tálamo , Humanos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/fisiopatología , Masculino , Femenino , Tálamo/diagnóstico por imagen , Tálamo/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/fisiopatología , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Adulto Joven , Adolescente , Imagen de Difusión por Resonancia Magnética , Adulto , Mapeo Encefálico/métodos
2.
Psychol Med ; 54(8): 1461-1474, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639006

RESUMEN

Mendelian randomization (MR) leverages genetic information to examine the causal relationship between phenotypes allowing for the presence of unmeasured confounders. MR has been widely applied to unresolved questions in epidemiology, making use of summary statistics from genome-wide association studies on an increasing number of human traits. However, an understanding of essential concepts is necessary for the appropriate application and interpretation of MR. This review aims to provide a non-technical overview of MR and demonstrate its relevance to psychiatric research. We begin with the origins of MR and the reasons for its recent expansion, followed by an overview of its statistical methodology. We then describe the limitations of MR, and how these are being addressed by recent methodological advances. We showcase the practical use of MR in psychiatry through three illustrative examples - the connection between cannabis use and psychosis, the link between intelligence and schizophrenia, and the search for modifiable risk factors for depression. The review concludes with a discussion of the prospects of MR, focusing on the integration of multi-omics data and its extension to delineating complex causal networks.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Esquizofrenia , Humanos , Esquizofrenia/genética , Causalidad , Trastornos Psicóticos/genética , Trastornos Psicóticos/epidemiología , Inteligencia/genética , Trastornos Mentales/genética , Trastornos Mentales/epidemiología
3.
Brain Behav Immun ; 118: 22-30, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38355025

RESUMEN

BACKGROUND: Schizophrenia and white blood cell counts (WBC) are both complex and polygenic traits. Previous evidence suggests that increased WBC are associated with higher all-cause mortality, and other studies have found elevated WBC in first-episode psychosis and chronic schizophrenia. However, these observational findings may be confounded by antipsychotic exposures and their effects on WBC. Mendelian randomization (MR) is a useful method for examining the directions of genetically-predicted relationships between schizophrenia and WBC. METHODS: We performed a two-sample MR using summary statistics from genome-wide association studies (GWAS) conducted by the Psychiatric Genomics Consortium Schizophrenia Workgroup (N = 130,644) and the Blood Cell Consortium (N = 563,946). The MR methods included inverse variance weighted (IVW), MR Egger, weighted median, MR-PRESSO, contamination mixture, and a novel approach called mixture model reciprocal causal inference (MRCI). False discovery rate was employed to correct for multiple testing. RESULTS: Multiple MR methods supported bidirectional genetically-predicted relationships between lymphocyte count and schizophrenia: IVW (b = 0.026; FDR p-value = 0.008), MR Egger (b = 0.026; FDR p-value = 0.008), weighted median (b = 0.013; FDR p-value = 0.049), and MR-PRESSO (b = 0.014; FDR p-value = 0.010) in the forward direction, and IVW (OR = 1.100; FDR p-value = 0.021), MR Egger (OR = 1.231; FDR p-value < 0.001), weighted median (OR = 1.136; FDR p-value = 0.006) and MRCI (OR = 1.260; FDR p-value = 0.026) in the reverse direction. MR Egger (OR = 1.171; FDR p-value < 0.001) and MRCI (OR = 1.154; FDR p-value = 0.026) both suggested genetically-predicted eosinophil count is associated with schizophrenia, but MR Egger (b = 0.060; FDR p-value = 0.010) and contamination mixture (b = -0.013; FDR p-value = 0.045) gave ambiguous results on whether genetically predicted liability to schizophrenia would be associated with eosinophil count. MR Egger (b = 0.044; FDR p-value = 0.010) and MR-PRESSO (b = 0.009; FDR p-value = 0.045) supported genetically predicted liability to schizophrenia is associated with elevated monocyte count, and the opposite direction was also indicated by MR Egger (OR = 1.231; FDR p-value = 0.045). Lastly, unidirectional genetic liability from schizophrenia to neutrophil count were proposed by MR-PRESSO (b = 0.011; FDR p-value = 0.028) and contamination mixture (b = 0.011; FDR p-value = 0.045) method. CONCLUSION: This MR study utilised multiple MR methods to obtain results suggesting bidirectional genetic genetically-predicted relationships for elevated lymphocyte counts and schizophrenia risk. In addition, moderate evidence also showed bidirectional genetically-predicted relationships between schizophrenia and monocyte counts, and unidirectional effect from genetic liability for eosinophil count to schizophrenia and from genetic liability for schizophrenia to neutrophil count. The influence of schizophrenia to eosinophil count is less certain. Our findings support the role of WBC in schizophrenia and concur with the hypothesis of neuroinflammation in schizophrenia.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Recuento de Leucocitos
4.
Asian J Psychiatr ; 96: 104046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663229

RESUMEN

Rare and low-frequency variants contribute to schizophrenia (SCZ), and may influence its age-at-onset (AAO). We examined the association of rare or low-frequency deleterious coding variants in Chinese patients with SCZ. We collected DNA samples in 197 patients with SCZ spectrum disorder and 82 healthy controls (HC), and performed exome sequencing. The AAO variable was ascertained in the majority of SCZ participants for identify the early-onset (EOS, AAO<=18) and adult-onset (AOS, AAO>18) subgroups. We examined the overall association of rare/low-frequency, damaging variants in SCZ versus HC, EOS versus HC, and AOS versus HC at the gene and gene-set levels using Sequence Kernel Association Test. The quantitative rare-variant association test of AAO was conducted. Resampling was used to obtain empirical p-values and to control for family-wise error rate (FWER). In binary-trait association tests, we identified 5 potential candidate risk genes and 10 gene ontology biological processes (GOBP) terms, among which PADI2 reached FWER-adjusted significance. In quantitative rare-variant association tests, we found marginally significant correlations of AAO with alterations in 4 candidate risk genes, and 5 GOBP pathways. Together, the biological and functional profiles of these genes and gene sets supported the involvement of perturbations of neural systems in SCZ, and altered immune functions in EOS.


Asunto(s)
Edad de Inicio , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/inmunología , Femenino , Masculino , Adulto , Adulto Joven , Predisposición Genética a la Enfermedad/genética , China , Adolescente , Pueblo Asiatico/genética , Pueblos del Este de Asia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA