Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Nucl Cardiol ; 28(6): 2730-2744, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-32333282

RESUMEN

BACKGROUND: The aim of this work was to assess the robustness of cardiac SPECT radiomic features against changes in imaging settings, including acquisition, and reconstruction parameters. METHODS: Four commercial SPECT and SPECT/CT cameras were used to acquire images of a static cardiac phantom mimicking typical myorcardial perfusion imaging using 185 MBq of 99mTc. The effects of different image acquisition and reconstruction parameters, including number of views, view matrix size, attenuation correction, as well as image reconstruction related parameters (algorithm, number of iterations, number of subsets, type of post-reconstruction filter, and its associated parameters, including filter order and cut-off frequency) were studied. In total, 5,063 transverse views were reconstructed by varying the aforementioned factors. Eighty-seven radiomic features including first-, second-, and high-order textures were extracted from these images. To assess reproducibility and repeatability, the coefficient of variation (COV), as a widely adopted metric, was measured for each of the radiomic features over the different imaging settings. RESULTS: The Inverse Difference Moment Normalized (IDMN) and Inverse Difference Normalized (IDN) features from the Gray Level Co-occurrence Matrix (GLCM), Run Percentage (RP) from the Gray Level Co-occurrence Matrix (GLRLM), Zone Entropy (ZE) from the Gray Level Size Zone Matrix (GLSZM), and Dependence Entropy (DE) from the Gray Level Dependence Matrix (GLDM) feature sets were the only features that exhibited high reproducibility (COV ≤ 5%) against changes in all imaging settings. In addition, Large Area Low Gray Level Emphasis (LALGLE), Small Area Low Gray Level Emphasis (SALGLE) and Low Gray Level Zone Emphasis (LGLZE) from GLSZM, and Small Dependence Low Gray Level Emphasis (SDLGLE) from GLDM feature sets turned out to be less reproducible (COV > 20%) against changes in imaging settings. The GLRLM (31.88%) and GLDM feature set (54.2%) had the highest (COV < 5%) and lowest (COV > 20%) number of the reproducible features, respectively. Matrix size had the largest impact on feature variability as most of the features were not repeatable when matrix size was modified with 82.8% of them having a COV > 20%. CONCLUSION: The repeatability and reproducibility of SPECT/CT cardiac radiomic features under different imaging settings is feature-dependent. Different image acquisition and reconstruction protocols have variable effects on radiomic features. The radiomic features exhibiting low COV are potential candidates for future clinical studies.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Humanos , Reproducibilidad de los Resultados , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único
2.
J Biomed Phys Eng ; 14(2): 119-128, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628890

RESUMEN

Background: Intraoperative Irradiation Therapy (IORT) refers to the delivery of radiation during surgery and needs the computed- thickness of the target as one of the most significant factors. Objective: This paper aimed to compute target thickness and design a radiation pattern distributing the irradiation uniformly throughout the target. Material and Methods: The Monte Carlo code was used to simulate the experimental setup in this simulation study. The electron flux variations on an electronic board's metallic layer were studied for different thicknesses of the target tissue and validated with experimental data of the electronic board. Results: Based on the electron number for different Poly Methyl Methacrylate (PMMA) phantom thicknesses at various energies, 6 MeV electrons are suitable to determine the target thickness. Uniformity in radiation and corresponding time for each target were investigated. The iso-dose and percentage depth dose curves show that higher energies are suitable for treatment and distribute uniform radiation throughout the target. Increasing the phantom thickness leads to rising radiation time based on the radiation time corresponding to these energies. The tissue thickness of each section is determined, and the radiation time is managed by scanning the target. Conclusion: Calculation of the thickness of the remaining tissue and irradiation time are needed after incomplete tumor removal in IORT for various remaining tissues. The patients should be protected from overexposure to uniform irradiation of tissues since the radiation dose is prescribed and checked by an oncologist.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA