Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 35(46): 15466-76, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26586832

RESUMEN

Humans shape their hands to grasp, manipulate objects, and to communicate. From nonhuman primate studies, we know that visual and motor properties for grasps can be derived from cells in the posterior parietal cortex (PPC). Are non-grasp-related hand shapes in humans represented similarly? Here we show for the first time how single neurons in the PPC of humans are selective for particular imagined hand shapes independent of graspable objects. We find that motor imagery to shape the hand can be successfully decoded from the PPC by implementing a version of the popular Rock-Paper-Scissors game and its extension Rock-Paper-Scissors-Lizard-Spock. By simultaneous presentation of visual and auditory cues, we can discriminate motor imagery from visual information and show differences in auditory and visual information processing in the PPC. These results also demonstrate that neural signals from human PPC can be used to drive a dexterous cortical neuroprosthesis. SIGNIFICANCE STATEMENT: This study shows for the first time hand-shape decoding from human PPC. Unlike nonhuman primate studies in which the visual stimuli are the objects to be grasped, the visually cued hand shapes that we use are independent of the stimuli. Furthermore, we can show that distinct neuronal populations are activated for the visual cue and the imagined hand shape. Additionally we found that auditory and visual stimuli that cue the same hand shape are processed differently in PPC. Early on in a trial, only the visual stimuli and not the auditory stimuli can be decoded. During the later stages of a trial, the motor imagery for a particular hand shape can be decoded for both modalities.


Asunto(s)
Mapeo Encefálico , Fuerza de la Mano/fisiología , Imaginación/fisiología , Lóbulo Parietal/fisiología , Estimulación Acústica , Señales (Psicología) , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Modelos Neurológicos , Movimiento , Neuronas/fisiología , Oxígeno/sangre , Lóbulo Parietal/irrigación sanguínea , Lóbulo Parietal/citología , Estimulación Luminosa
2.
Elife ; 72018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29633714

RESUMEN

Pioneering work with nonhuman primates and recent human studies established intracortical microstimulation (ICMS) in primary somatosensory cortex (S1) as a method of inducing discriminable artificial sensation. However, these artificial sensations do not yet provide the breadth of cutaneous and proprioceptive percepts available through natural stimulation. In a tetraplegic human with two microelectrode arrays implanted in S1, we report replicable elicitations of sensations in both the cutaneous and proprioceptive modalities localized to the contralateral arm, dependent on both amplitude and frequency of stimulation. Furthermore, we found a subset of electrodes that exhibited multimodal properties, and that proprioceptive percepts on these electrodes were associated with higher amplitudes, irrespective of the frequency. These novel results demonstrate the ability to provide naturalistic percepts through ICMS that can more closely mimic the body's natural physiological capabilities. Furthermore, delivering both cutaneous and proprioceptive sensations through artificial somatosensory feedback could improve performance and embodiment in brain-machine interfaces.


Asunto(s)
Estimulación Eléctrica/instrumentación , Electrodos Implantados , Mano/fisiología , Microelectrodos , Propiocepción , Piel/fisiopatología , Corteza Somatosensorial/fisiología , Interfaces Cerebro-Computador , Potenciales Evocados Somatosensoriales , Humanos , Piel/inervación , Percepción del Tacto
3.
Science ; 348(6237): 906-10, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-25999506

RESUMEN

Nonhuman primate and human studies have suggested that populations of neurons in the posterior parietal cortex (PPC) may represent high-level aspects of action planning that can be used to control external devices as part of a brain-machine interface. However, there is no direct neuron-recording evidence that human PPC is involved in action planning, and the suitability of these signals for neuroprosthetic control has not been tested. We recorded neural population activity with arrays of microelectrodes implanted in the PPC of a tetraplegic subject. Motor imagery could be decoded from these neural populations, including imagined goals, trajectories, and types of movement. These findings indicate that the PPC of humans represents high-level, cognitive aspects of action and that the PPC can be a rich source for cognitive control signals for neural prosthetics that assist paralyzed patients.


Asunto(s)
Neuroimagen Funcional/métodos , Prótesis Neurales , Neuronas/fisiología , Lóbulo Parietal/fisiopatología , Cuadriplejía/fisiopatología , Cuadriplejía/terapia , Interfaces Cerebro-Computador , Cognición , Electrodos Implantados , Humanos , Microelectrodos , Actividad Motora , Movimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA