Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(9): 2876-2884, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38385324

RESUMEN

Upconversion (UC)/downconversion (DC)-luminescent lanthanide-doped nanocrystals (LDNCs) with near-infrared (NIR, 650-1700 nm) excitation have been gaining increasing popularity in bioimaging. However, conventional NIR-excited LDNCs cannot be degraded and eliminated eventually in vivo owing to intrinsic "rigid" lattices, thus constraining clinical applications. A biodegradability-tunable heterogeneous core-shell-shell luminescent LDNC of Na3HfF7:Yb,Er@Na3ZrF7:Yb,Er@CaF2:Yb,Zr (abbreviated as HZC) was developed and modified with oxidized sodium alginate (OSA) for multimode bioimaging. The dynamic "soft" lattice-Na3Hf(Zr)F7 host and the varying Zr4+ doping content in the outmoster CaF2 shell endowed HZC with tunable degradability. Through elaborated core-shell-shell coating, Yb3+/Er3+-coupled UC red and green and DC second near-infrared (NIR-II) emissions were, respectively, enhanced by 31.23-, 150.60-, and 19.42-fold when compared with core nanocrystals. HZC generated computed tomography (CT) imaging contrast effects, thus enabling NIR-II/CT/UC trimodal imaging. OSA modification not only ensured the exemplary biocompatibility of HZC but also enabled tumor-specific diagnosis. The findings would benefit the clinical imaging translation of LDNCs.


Asunto(s)
Elementos de la Serie de los Lantanoides , Nanopartículas , Hafnio , Circonio , Nanopartículas/química , Tomografía Computarizada por Rayos X
2.
Nano Lett ; 24(37): 11738-11746, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39229926

RESUMEN

Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.


Asunto(s)
Fluoruros , Hafnio , Circonio , Circonio/química , Humanos , Hafnio/química , Fluoruros/química , Nanopartículas/química , Tomografía Computarizada por Rayos X/métodos , Animales , Medios de Contraste/química
3.
J Mater Chem B ; 12(10): 2594-2609, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38372142

RESUMEN

Although plant-derived cancer therapeutic products possess great promise in clinical translations, they still suffer from quick degradation and low targeting rates. Herein, based on the oxygen vacancy (OV)-immobilization strategy, an OV-enriched biodegradable silicate nanoplatform with atomically dispersed Fe/Mn active species and polyethylene glycol modification was innovated for loading gallic acid (GA) (noted as FMMPG) for intratumoral coordination-enhanced multicatalytic cancer therapy. The OV-enriched FMMPG nanozymes with a narrow band gap (1.74 eV) can be excited by a 650 nm laser to generate reactive oxygen species. Benefiting from the Mn-O bond in response to the tumor microenvironment (TME), the silicate skeleton in FMMPG collapses and completely degrades after 24 h. The degraded metal M (M = Fe, Mn) ions and released GA can in situ produce a stable M-GA nanocomplex at tumor sites. Importantly, the formed M-GA with strong reductive ability can transform H2O2 into the fatal hydroxyl radical, causing serious oxidative damage to the tumor. The released Fe3+ and Mn2+ can serve as enhanced contrast agents for magnetic resonance imaging, which can track the chemodynamic and photodynamic therapy processes. The work offers a reasonable strategy for a TME-responsive degradation and intratumoral coordination-enhanced multicatalytic therapy founded on bimetallic silicate nanozymes to achieve desirable tumor theranostic outcomes.


Asunto(s)
Hierro , Manganeso , Hierro/química , Manganeso/química , Línea Celular Tumoral , Peróxido de Hidrógeno , Oxígeno , Silicatos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA