Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(13)2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-39000512

RESUMEN

Brain pathological changes impair cognition early in disease etiology. There is an urgent need to understand aging-linked mechanisms of early memory loss to develop therapeutic strategies and prevent the development of cognitive impairment. Tusc2 is a mitochondrial-resident protein regulating Ca2+ fluxes to and from mitochondria impacting overall health. We previously reported that Tusc2-/- female mice develop chronic inflammation and age prematurely, causing age- and sex-dependent spatial memory deficits at 5 months old. Therefore, we investigated Tusc2-dependent mechanisms of memory impairment in 4-month-old mice, comparing changes in resident and brain-infiltrating immune cells. Interestingly, Tusc2-/- female mice demonstrated a pro-inflammatory increase in astrocytes, expression of IFN-γ in CD4+ T cells and Granzyme-B in CD8+T cells. We also found fewer FOXP3+ T-regulatory cells and Ly49G+ NK and Ly49G+ NKT cells in female Tusc2-/- brains, suggesting a dampened anti-inflammatory response. Moreover, Tusc2-/- hippocampi exhibited Tusc2- and sex-specific protein changes associated with brain plasticity, including mTOR activation, and Calbindin and CamKII dysregulation affecting intracellular Ca2+ dynamics. Overall, the data suggest that dysregulation of Ca2+-dependent processes and a heightened pro-inflammatory brain microenvironment in Tusc2-/- mice could underlie cognitive impairment. Thus, strategies to modulate the mitochondrial Tusc2- and Ca2+- signaling pathways in the brain should be explored to improve cognitive health.


Asunto(s)
Mitocondrias , Memoria Espacial , Animales , Ratones , Femenino , Mitocondrias/metabolismo , Masculino , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/genética , Encéfalo/metabolismo , Encéfalo/patología , Ratones Noqueados , Ratones Endogámicos C57BL , Inflamación/metabolismo , Inflamación/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Astrocitos/metabolismo , Astrocitos/patología , Microambiente Celular , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Hipocampo/metabolismo , Hipocampo/patología
2.
Cytokine ; 84: 74-87, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27253488

RESUMEN

Butyrate is a histone deacetylase inhibitor implicated in many studies as a potential therapy for various forms of cancer. High concentrations of butyrate (>1.5mM) have been shown to activate apoptosis in several cancer cell lines including prostate, breast, and leukemia. Butyrate is also known to influence multiple signaling pathways that are mediators of cytokine production. The purpose of this study was to evaluate the impact of high concentrations of butyrate on the cancer microenvironment vis-à-vis apoptosis, cellular migration, and capacity to modulate cytokine expression in cancer cells. The results indicate that high concentrations of butyrate induced a 2-fold activation of caspase-3 and reduced cell viability by 60% in U937 leukemia cells. Within 24h, butyrate significantly decreased the levels of chemokines CCL2 and CCL5 in HL-60 and U937 cells, and decreased CCL5 in THP-1 leukemia cells. Differential effects were observed in treatments with valproic acid for CCL2 and CCL5 indicating butyrate-specificity. Many of the biological effects examined in this study are linked to activation of the AKT and MAPK signaling pathways; therefore, we investigated whether butyrate alters the levels of phosphorylated forms of these signaling proteins and how it correlated with the expression of chemokines. The results show that butyrate may partially regulate CCL5 production via p38 MAPK. The decrease in p-ERK1/2 and p-AKT levels correlated with the decrease in CCL2 production. These data suggest that while promoting apoptosis, butyrate has the potential to influence the cancer microenvironment by inducing differential expression of cytokines.


Asunto(s)
Apoptosis/efectos de los fármacos , Butiratos/farmacología , Quimiocinas/metabolismo , Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasa 3/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Quimiocina CCL5/metabolismo , Células HL-60 , Humanos , Inflamación/tratamiento farmacológico , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Células U937 , Ácido Valproico/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
3.
Environ Res ; 146: 173-84, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26765097

RESUMEN

The exposome provides a framework for understanding elucidation of an uncharacterized molecular mechanism conferring enhanced susceptibility of macrophage membranes to bacterial infection after exposure to the environmental contaminant benzo(a)pyrene, [B(a)P]. The fundamental requirement in activation of macrophage effector functions is the binding of immunoglobulins to Fc receptors. FcγRIIa (CD32a), a member of the Fc family of immunoreceptors with low affinity for immunoglobulin G, has been reported to bind preferentially to IgG within lipid rafts. Previous research suggested that exposure to B(a)P suppressed macrophage effector functions but the molecular mechanisms remain elusive. The goal of this study was to elucidate the mechanism(s) of B(a)P-exposure induced suppression of macrophage function by examining the resultant effects of exposure-induced insult on CD32-lipid raft interactions in the regulation of IgG binding to CD32. The results demonstrate that exposure of macrophages to B(a)P alters lipid raft integrity by decreasing membrane cholesterol 25% while increasing CD32 into non-lipid raft fractions. This robust diminution in membrane cholesterol and 30% exclusion of CD32 from lipid rafts causes a significant reduction in CD32-mediated IgG binding to suppress essential macrophage effector functions. Such exposures across the lifespan would have the potential to induce immunosuppressive endophenotypes in vulnerable populations.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Benzo(a)pireno/toxicidad , Macrófagos/efectos de los fármacos , Microdominios de Membrana/efectos de los fármacos , Nistatina/farmacología , beta-Ciclodextrinas/farmacología , Células Cultivadas , Humanos , Inmunoglobulina G/metabolismo , Macrófagos/inmunología , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transducción de Señal
4.
J Health Care Poor Underserved ; 35(1): ix-xiv, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661853

RESUMEN

Human subjects research and drug and device development currently base their findings largely on the genetic data of the non-Hispanic White population, excluding People of Color. This practice puts People of Color at a distinct and potentially deadly disadvantage in being treated for sickness, disability, and disease, as seen during the COVID-19 pandemic. Major disparities exist in all chronic health conditions, including cancer. Data show that less than 2% of genetic information being studied today originates from people of African ancestry. If genomic datasets do not adequately represent People of Color, new drugs and genetic therapies may not work as well as for people of European descent. Addressing the urgent concern that historically marginalized people may again be excluded from the next technological leap affecting human health and the benefits it will bring will requires a paradigm shift. Thus, on behalf of underserved and marginalized people, we developed the Together for CHANGE (T4C) initiative as a unique collaborative public-private partnership to address the concern. The comprehensive programs designed in the T4C initiative, governed by the Diaspora Human Genomics Institute founded by Meharry Medical College, will transform the landscape of education and health care and positively affect global Black communities for decades to come.


Asunto(s)
Tecnología Biomédica , Población Negra , Diversidad Cultural , Poblaciones Vulnerables , Proyectos de Investigación , Lagunas en las Evidencias , Tecnología Biomédica/normas , Tecnología Biomédica/tendencias , Asociación entre el Sector Público-Privado , Genómica , Eticistas , Humanos
5.
Cancers (Basel) ; 16(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38339421

RESUMEN

BACKGROUND: Defects in apoptosis regulation are one of the classical features of cancer cells, often associated with more aggressiveness and failure to therapeutic options. We investigated the combinatorial antitumor effects of a natural product, physachenolide C (PCC) and bortezomib, in KRASmut/P53mut lung cancer cells and xenograft mice models. METHODS: The in vitro anticancer effects of the bortezomib and PCC combination were investigated using cell viability, migration, and invasion assays in 344SQ, H23, and H358 cell lines. Furthermore, the effects of combination treatment on the critical parameters of cellular metabolism, including extracellular acidification rate (ECAR) and mitochondrial oxidative phosphorylation based on the oxygen consumption rate of cancer cells were assessed using Seahorse assay. Finally, the antitumor effect of the bortezomib (1 mg/kg) and PCC (10 mg/kg) combination was evaluated using xenograft mice models. RESULTS: Our data showed that the bortezomib-PCC combination was more effective in reducing the viability of lung cancer cells in comparison with the individual treatments. Similarly, the combination treatment showed a significant inhibition of cell migration and invasion of cancer cells. Additionally, the key anti-apoptotic protein c-FLIP was significantly inhibited along with a substantial reduction in the key parameters of cellular metabolism in cancer cells. Notably, the bortezomib or PCC inhibited the tumor growth compared to the control group, the tumor growth inhibition was much more effective when bortezomib was combined with PCC in tumor xenograft mice models. CONCLUSION: These findings demonstrate that PCC sensitizes cancer cells to bortezomib, potentially improving the antitumor effects against KRASmut/P53mut lung cancer cells, with an enhanced efficacy of combination treatments without causing significant side effects.

6.
Dent Res Oral Health ; 7(2): 58-65, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38957610

RESUMEN

Background: Topoisomerase IIα (TOP2A), is an enzyme involved in DNA replication, transcription, recombination, and chromatin remodeling and is found in a variety of cancers. However, the role of TOP2A regulation in oral cancer progression is not fully explained. We investigated the effect of TOP2A inhibition on cell survival, metabolism, and cancer stem cell self-renewal function in oral cancer cells. Methods: Oral carcinoma cell line SCC25 was cultured in complete DMEM/F12 media and treated with 5µM of Etoposide (Topoisomerase II inhibitor) for 48h. The critical parameters of cellular metabolism, including extracellular acidification rate (ECAR) and mitochondrial oxidative phosphorylation based on the oxygen consumption rate of cancer cells were assessed using Seahorse assay. Western blotting was performed to assess the proteins that are associated with proliferation (Survivin, IL-6) and cancer stem cell function (Oct4, Sox2) in cell lysates prepared from control and etoposide treated groups. Statistical analysis was performed using One-way ANOVA with Dunnett's multiple comparisons test. Results: The protein expression of TOP2A was significantly (P<0.05) inhibited by etoposide. Additionally, TOP2A inhibition decreased the mitochondrial respiratory parameters including basal respiration, maximal respiration and ATP production. However, TOP2A inhibition has no impact on glycolytic function. Moreover, the proliferative marker survivin and IL-6 showed a significant (P<0.05) decrease after TOP2A inhibition. Conversely, the protein expression of cancer stem cell markers Oct-4 and Sox 2 were not altered. Conclusion: These results indicate that inhibition of TOP2A is more efficacious by decreasing the mitochondrial metabolic reprogramming and thereby downregulating the key anti-apoptotic and pro-survival mediators. Thus, TOP2A represents an ideal therapeutic target and offers a potential treatment strategy for OSCC.

8.
J Transl Med ; 11: 145, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23758773

RESUMEN

BACKGROUND: Recent observations suggest that immune-mediated tissue destruction is dependent upon coordinate activation of immune genes expressed by cells of the innate and adaptive immune systems. METHODS: Here, we performed a retrospective pilot study to investigate whether the coordinate expression of molecular signature mostly associated with NK cells could be used to segregate breast cancer patients into relapse and relapse-free outcomes. RESULTS: By analyzing primary breast cancer specimens derived from patients who experienced either 58-116 months (~5-9 years) relapse-free survival or developed tumor relapse within 9-76 months (~1-6 years) we found that the expression of molecules involved in activating signaling of NK cells and in NK cells: target interaction is increased in patients with favorable prognosis. CONCLUSIONS: The parameters identified in this study, together with the prognostic signature previously reported by our group, highlight the cooperation between the innate and adaptive immune components within the tumor microenvironment.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Perfilación de la Expresión Génica , Células Asesinas Naturales/inmunología , Antígenos CD1d/metabolismo , Neoplasias de la Mama/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Recuento de Células , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Activación de Linfocitos/genética , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/patología , Recurrencia , Transducción de Señal/genética , Máquina de Vectores de Soporte , Resultado del Tratamiento
9.
Antioxidants (Basel) ; 12(6)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37371955

RESUMEN

Tightly regulated and robust mitochondrial activities are critical for normal hearing. Previously, we demonstrated that Fus1/Tusc2 KO mice with mitochondrial dysfunction exhibit premature hearing loss. Molecular analysis of the cochlea revealed hyperactivation of the mTOR pathway, oxidative stress, and altered mitochondrial morphology and quantity, suggesting compromised energy sensing and production. Here, we investigated whether the pharmacological modulation of metabolic pathways using rapamycin (RAPA) or 2-deoxy-D-glucose (2-DG) supplementation can protect against hearing loss in female Fus1 KO mice. Additionally, we aimed to identify mitochondria- and Fus1/Tusc2-dependent molecular pathways and processes critical for hearing. We found that inhibiting mTOR or activating alternative mitochondrial energetic pathways to glycolysis protected hearing in the mice. Comparative gene expression analysis revealed the dysregulation of critical biological processes in the KO cochlea, including mitochondrial metabolism, neural and immune responses, and the cochlear hypothalamic-pituitary-adrenal axis signaling system. RAPA and 2-DG mostly normalized these processes, although some genes showed a drug-specific response or no response at all. Interestingly, both drugs resulted in a pronounced upregulation of critical hearing-related genes not altered in the non-treated KO cochlea, including cytoskeletal and motor proteins and calcium-linked transporters and voltage-gated channels. These findings suggest that the pharmacological modulation of mitochondrial metabolism and bioenergetics may restore and activate processes critical for hearing, thereby protecting against hearing loss.

10.
Commun Med (Lond) ; 3(1): 117, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626117

RESUMEN

BACKGROUND: Decentralized, digital health studies can provide real-world evidence of the lasting effects of COVID-19 on physical, socioeconomic, psychological, and social determinant factors of health in India. Existing research cohorts, however, are small and were not designed for longitudinal collection of comprehensive data from India's diverse population. Data4Life is a nationwide, digitally enabled, health research initiative to examine the post-acute sequelae of COVID-19 across individuals, communities, and regions. Data4Life seeks to build an ethnically and geographically diverse population of at least 100,000 participants in India. METHODS: Here we discuss the feasibility of developing a completely decentralized COVID-19 cohort in India through qualitative analysis of data collection procedures, participant characteristics, participant perspectives on recruitment and reported study motivation. RESULTS: As of June 13th, 2022, more than 6,000 participants from 17 Indian states completed baseline surveys. Friend and family referral were identified as the most common recruitment method (64.8%) across all demographic groups. Helping family and friends was the primary reason reported for joining the study (61.5%). CONCLUSIONS: Preliminary findings support the use of digital technology for rapid enrollment and data collection to develop large health research cohorts in India. This demonstrates the potential for expansion of digitally enabled health research in India. These findings also outline the value of person-to-person recruitment strategies when conducting digital health research in modern-day India. Qualitative analysis reveals opportunities to increase diversity and retention in real time. It also informs strategies for improving participant experiences in the current Data4Life initiative and future studies.


Due to the vast geographical size and ethnic diversity of the population, India represents a huge challenge for conducting research studies. The Data4Life study was set up to understand if digital tools can be an effective way to study long-term effects of COVID-19 across India. We studied different ways of collecting the relevant information from participants, the background of each participant, reasons, and motivation of each participant for joining the study. The results showed that friend and family referrals were the most common recruitment reason. Helping family and friends was reported as the main motivation for joining the study. Overall, the findings support the use of digital tools as an effective recruitment method for research studies in India.

11.
JMIR AI ; 2: e52888, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38875540

RESUMEN

BACKGROUND: Artificial intelligence (AI) and machine learning (ML) technology design and development continues to be rapid, despite major limitations in its current form as a practice and discipline to address all sociohumanitarian issues and complexities. From these limitations emerges an imperative to strengthen AI and ML literacy in underserved communities and build a more diverse AI and ML design and development workforce engaged in health research. OBJECTIVE: AI and ML has the potential to account for and assess a variety of factors that contribute to health and disease and to improve prevention, diagnosis, and therapy. Here, we describe recent activities within the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Ethics and Equity Workgroup (EEWG) that led to the development of deliverables that will help put ethics and fairness at the forefront of AI and ML applications to build equity in biomedical research, education, and health care. METHODS: The AIM-AHEAD EEWG was created in 2021 with 3 cochairs and 51 members in year 1 and 2 cochairs and ~40 members in year 2. Members in both years included AIM-AHEAD principal investigators, coinvestigators, leadership fellows, and research fellows. The EEWG used a modified Delphi approach using polling, ranking, and other exercises to facilitate discussions around tangible steps, key terms, and definitions needed to ensure that ethics and fairness are at the forefront of AI and ML applications to build equity in biomedical research, education, and health care. RESULTS: The EEWG developed a set of ethics and equity principles, a glossary, and an interview guide. The ethics and equity principles comprise 5 core principles, each with subparts, which articulate best practices for working with stakeholders from historically and presently underrepresented communities. The glossary contains 12 terms and definitions, with particular emphasis on optimal development, refinement, and implementation of AI and ML in health equity research. To accompany the glossary, the EEWG developed a concept relationship diagram that describes the logical flow of and relationship between the definitional concepts. Lastly, the interview guide provides questions that can be used or adapted to garner stakeholder and community perspectives on the principles and glossary. CONCLUSIONS: Ongoing engagement is needed around our principles and glossary to identify and predict potential limitations in their uses in AI and ML research settings, especially for institutions with limited resources. This requires time, careful consideration, and honest discussions around what classifies an engagement incentive as meaningful to support and sustain their full engagement. By slowing down to meet historically and presently underresourced institutions and communities where they are and where they are capable of engaging and competing, there is higher potential to achieve needed diversity, ethics, and equity in AI and ML implementation in health research.

12.
J Natl Cancer Inst ; 115(11): 1404-1419, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37195421

RESUMEN

BACKGROUND: We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS: The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS: Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS: Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptor de Adenosina A2B/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Terapia de Inmunosupresión , Adenosina/metabolismo , Fosfatos , Línea Celular Tumoral
13.
Cancer Gene Ther ; 29(10): 1307-1320, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35181743

RESUMEN

FUS1/TUSC2 (FUSion1/TUmor Suppressor Candidate 2) is a tumor suppressor gene (TSG) originally described as a member of the TSG cluster from human 3p21.3 chromosomal region frequently deleted in lung cancer. Its role as a TSG in lung, breast, bone, and other cancers was demonstrated by several groups, but molecular mechanisms of its activities are starting to unveil lately. They suggest that Fus1-dependent mechanisms are relevant in etiologies of diseases beyond cancer, such as chronic inflammation, bacterial and viral infections, premature aging, and geriatric diseases. Here, we revisit the discovery of FUS1 gene in the context of tumor initiation and progression, and review 20 years of research into FUS1 functions and its molecular, structural, and biological aspects that have led to its use in clinical trials and gene therapy. We present a data-driven view on how interactions of Fus1 with the mitochondrial Ca2+ (mitoCa2+) transport machinery maintain cellular Ca2+ homeostasis and control cell apoptosis and senescence. This Fus1-mediated cellular homeostasis is at the crux of tumor suppressor, anti-inflammatory and anti-aging activities.


Asunto(s)
Neoplasias Pulmonares , Proteínas Supresoras de Tumor , Anciano , Humanos , Envejecimiento , Antiinflamatorios , Genes Supresores de Tumor , Homeostasis , Neoplasias Pulmonares/genética , Proteínas Supresoras de Tumor/genética
14.
Cancer Immunol Immunother ; 60(8): 1061-74, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21656157

RESUMEN

The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control.


Asunto(s)
Inmunoterapia , Neoplasias/inmunología , Inmunidad Adaptativa , Animales , Comunicación Celular , Humanos , Inmunidad Innata , Neoplasias/terapia , Escape del Tumor
15.
Front Immunol ; 12: 607044, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717088

RESUMEN

Suppressive mechanisms operating within T cells are linked to immune dysfunction in the tumor microenvironment. We have previously reported using adoptive T cell immunotherapy models that tumor-bearing mice treated with a regimen of proteasome inhibitor, bortezomib - a dipeptidyl boronate, show increased antitumor lymphocyte effector function and survival. Here, we identify a mechanism for the improved antitumor CD8+ T cell function following bortezomib treatment. Intravenous administration of bortezomib at a low dose (1 mg/kg body weight) in wild-type or tumor-bearing mice altered the expression of a number of miRNAs in CD8+ T cells. Specifically, the effect of bortezomib was prominent on miR-155 - a key cellular miRNA involved in T cell function. Importantly, bortezomib-induced upregulation of miR-155 was associated with the downregulation of its targets, the suppressor of cytokine signaling 1 (SOCS1) and inositol polyphosphate-5-phosphatase (SHIP1). Genetic and biochemical analysis confirmed a functional link between miR-155 and these targets. Moreover, activated CD8+ T cells treated with bortezomib exhibited a significant reduction in programmed cell death-1 (PD-1) expressing SHIP1+ phenotype. These data underscore a mechanism of action by which bortezomib induces miR-155-dependent downregulation of SOCS1 and SHIP1 negative regulatory proteins, leading to a suppressed PD-1-mediated T cell exhaustion. Collectively, data provide novel molecular insights into bortezomib-mediated lymphocyte-stimulatory effects that could overcome immunosuppressive actions of tumor on antitumor T cell functions. The findings support the approach that bortezomib combined with other immunotherapies would lead to improved therapeutic outcomes by overcoming T cell exhaustion in the tumor microenvironment.


Asunto(s)
Antineoplásicos/farmacología , Bortezomib/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , MicroARNs/genética , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Inhibidores de Proteasoma/farmacología , Proteína 1 Supresora de la Señalización de Citocinas/genética , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Recuento de Linfocitos , Ratones , MicroARNs/química , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/química , Pliegue del ARN , Interferencia de ARN , Transducción de Señal , Proteína 1 Supresora de la Señalización de Citocinas/química
16.
Cancer Res ; 81(12): 3374-3386, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-33837043

RESUMEN

Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17ß-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.


Asunto(s)
Productos Biológicos/farmacología , Proteínas de Ciclo Celular/antagonistas & inhibidores , Inmunoterapia/métodos , Melanoma Experimental/tratamiento farmacológico , Poli I-C/farmacología , Factores de Transcripción/antagonistas & inhibidores , Witanólidos/farmacología , Animales , Antineoplásicos Fitogénicos/farmacología , Apoptosis , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/patología , Proliferación Celular , Quimioterapia Combinada , Femenino , Humanos , Inductores de Interferón/farmacología , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/inmunología , Neoplasias Renales/patología , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS One ; 16(3): e0246393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33690604

RESUMEN

Evidence link bacterial enterotoxins to apparent crypt-cell like cells (CCLCs), and Alpha Defensin 5 (DEFA5) expansion in the colonic mucosa of Crohn's colitis disease (CC) patients. These areas of ectopic ileal metaplasia, positive for Paneth cell (PC) markers are consistent with diagnosis of CC. Retrospectively, we: 1. Identified 21 patients with indeterminate colitis (IC) between 2000-2007 and were reevaluation their final clinical diagnosis in 2014 after a followed-up for mean 8.7±3.7 (range, 4-14) years. Their initial biopsies were analyzed by DEFA5 bioassay. 2. Differentiated ulcer-associated cell lineage (UACL) analysis by immunohistochemistry (IHC) of the CC patients, stained for Mucin 6 (MUC6) and DEFA5. 3. Treated human immortalized colonic epithelial cells (NCM460) and colonoids with pure DEFA5 on the secretion of signatures after 24hr. The control colonoids were not treated. 4. Treated colonoids with/without enterotoxins for 14 days and the spent medium were collected and determined by quantitative expression of DEFA5, CCLCs and other biologic signatures. The experiments were repeated twice. Three statistical methods were used: (i) Univariate analysis; (ii) LASSO; and (iii) Elastic net. DEFA5 bioassay discriminated CC and ulcerative colitis (UC) in a cohort of IC patients with accuracy. A fit logistic model with group CC and UC as the outcome and the DEFA5 as independent variable differentiator with a positive predictive value of 96 percent. IHC staining of CC for MUC6 and DEFA5 stained in different locations indicating that DEFA5 is not co-expressed in UACL and is therefore NOT the genesis of CC, rather a secretagogue for specific signature(s) that underlie the distinct crypt pathobiology of CC. Notably, we observed expansion of signatures after DEFA5 treatment on NCM460 and colonoids cells expressed at different times, intervals, and intensity. These factors are key stem cell niche regulators leading to DEFA5 secreting CCLCs differentiation 'the colonic ectopy ileal metaplasia formation' conspicuously of pathogenic importance in CC.


Asunto(s)
Colitis Ulcerosa/metabolismo , Colon/citología , Enfermedad de Crohn/metabolismo , Enterotoxinas/farmacología , Organoides/citología , alfa-Defensinas/metabolismo , Anciano , Linaje de la Célula , Células Cultivadas , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/efectos de los fármacos , Colon/metabolismo , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Femenino , Humanos , Modelos Logísticos , Masculino , Mucina 6/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Organoides/metabolismo , Proteómica , Estudios Retrospectivos
18.
Immunology ; 129(1): 41-54, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20050329

RESUMEN

In mice expressing a transgenic T-cell receptor (TCR; TCRP1A) of DBA/2 origin with reactivity towards a cancer-germline antigen P1A, the number of TCRP1A CD8+ T cells in lymphoid organs is lower in DBA/2 than in B10.D2 or B10.D2(x DBA/2)F1 mice. This reduction results from haemopoietic cell autonomous differences in the differentiation of the major histocompatibility complex class I-restricted TCRP1A thymocytes controlled by DBA/2 versus B10.D2-encoded genes. We report here that the lower number of TCRP1A CD8+ T cells in DBA/2 mice correlated with their poor resistance to P1A-expressing mastocytoma solid tumours. Functional potency of CD8+ cytolytic T lymphocytes (CTL) from the above strains was not compromised, but their number after expansion appeared to be influenced by their genetic background. Intriguingly, non-transgenic DBA/ 2 mice resisted P1A+ tumours more efficiently despite poor representation of P1A-specific CTL. This was partly the result of their more heterogeneous TCR repertoire, including reactivity to non-P1A tumour antigens because mice that had rejected a P1A+ tumour became resistant to a P1A) variant of the tumour. Such 'cross-resistance' did not develop in the TCRP1A transgenic mice. Nonetheless, reconstitution of RAGo/o mice with TCRP1A CD8+ T cells, with or without CD4+ T cells, or exclusive representation of TCRP1A CD8+ T cells in RAGo/o TCRP1A transgenic mice efficiently resisted the growth of P1A-expressing tumours. Natural killer cells present at a higher number in RAGo/o mice also contributed to tumour resistance, in part through an NKG2D-dependent mechanism. Hence, in the absence of a polyclonal T-cell repertoire, precursor frequencies of natural killer cells and tumour-specific CTL affect tumour resistance.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Recuento de Células , Células Asesinas Naturales/metabolismo , Mastocitoma/inmunología , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Traslado Adoptivo , Animales , Antígenos de Neoplasias/inmunología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Procesos de Crecimiento Celular , Supresión Clonal/genética , Inmunidad Celular , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/patología , Cooperación Linfocítica , Mastocitoma/patología , Ratones , Ratones Endogámicos DBA , Ratones Transgénicos , Subfamilia K de Receptores Similares a Lectina de Células NK/inmunología , Trasplante de Neoplasias , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Especificidad del Receptor de Antígeno de Linfocitos T/genética
19.
Front Immunol ; 11: 1869, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32973771

RESUMEN

Immune cells rely on cell-cell communication to specify and fine-tune their responses. They express an extensive network of cell communication modes, including a vast repertoire of cell surface and transmembrane receptors and ligands, membrane vesicles, junctions, ligand and voltage-gated ion channels, and transporters. During a crosstalk between the nervous system and the immune system these modes of cellular communication and the downstream signal transduction events are influenced by neurotransmitters present in the local tissue environments in an autocrine or paracrine fashion. Neurotransmitters thus influence innate and adaptive immune responses. In addition, immune cells send signals to the brain through cytokines, and are present in the brain to influence neural responses. Altered communication between the nervous and immune systems is emerging as a common feature in neurodegenerative and immunopathological diseases. Here, we present the mechanistic frameworks of immunostimulatory and immunosuppressive effects critical neurotransmitters - dopamine (3,4-dihydroxyphenethylamine), serotonin (5-hydroxytryptamine), substance P (trifluoroacetate salt powder), and L-glutamate - exert on lymphocytes and non-lymphoid immune cells. Furthermore, we discuss the possible roles neurotransmitter-driven neuroimmune networks play in the pathogenesis of neurodegenerative disorders, autoimmune diseases, cancer, and outline potential clinical implications of balancing neuroimmune crosstalk by therapeutic modulation.


Asunto(s)
Neuroinmunomodulación/inmunología , Neurotransmisores/inmunología , Animales , Humanos
20.
Front Immunol ; 11: 1958, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922403

RESUMEN

Understanding and targeting Notch signaling effectively has long been valued in the field of cancer and other immune disorders. Here, we discuss key discoveries at the intersection of Notch signaling, cancer and immunology. While there is a plethora of Notch targeting agents tested in vitro, in vivo and in clinic, undesirable off-target effects and therapy-related toxicities have been significant obstacles. We make a case for the clinical application of ligand-derived and affinity modifying compounds as novel therapeutic agents and discuss major research findings with an emphasis on Notch ligand-specific modulation of immune responses.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Neoplasias/terapia , Receptores Notch/antagonistas & inhibidores , Animales , Antineoplásicos/efectos adversos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Ligandos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Terapia Molecular Dirigida , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal , Escape del Tumor , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA