RESUMEN
Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.
Asunto(s)
Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Epilepsia/genética , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Femenino , Estudios de Asociación Genética , Heterocigoto , Humanos , Lactante , Trastornos del Desarrollo del Lenguaje/genética , Masculino , Obesidad/genética , Fenotipo , Adulto JovenRESUMEN
OBJECTIVE: We evaluated >8500 consecutive, unselected patients with epilepsy and neurodevelopmental disorders who underwent multigene panel testing to determine the average age at molecular diagnosis and diagnostic yield of 70 genes. METHODS: We reviewed molecular test results for 70 genes known to cause epilepsy and neurodevelopmental disorders using next generation sequencing (NGS) and exon-level array comparative genomic hybridization (aCGH). A positive result was defined as the presence of 1 or 2 pathogenic or likely pathogenic (P/LP) variants in a single gene, depending on the mode of inheritance of the associated disorder. RESULTS: Overall, 22 genes were found to have a high yield of positive findings by genetic testing, with SCN1A and KCNQ2 accounting for the greatest number of positive findings. In contrast, there were no positive findings in 16 genes. Most of the P/LP variants were sequence changes identified by NGS (90.9%), whereas ~9% were gross deletions or duplications detected by exon-level aCGH. The mean age of molecular diagnosis for the cohort was 5 years, 8 months (ranging from 1 week to 47 years). Recurrent P/LP variants were observed in 14 distinct genes, most commonly in MECP2, KCNQ2, SCN1A, SCN2A, STXBP1, and PRRT2. Parental testing was performed in >30% of positive cases. All variants identified in CDKL5, STXBP1, SCN8A, GABRA1, and FOXG1 were de novo, whereas 85.7% of variants in PRRT2 were inherited. SIGNIFICANCE: Using a combined approach of NGS and exon-level aCGH, testing identified a genetic etiology in 15.4% of patients in this cohort and revealed the age at molecular diagnosis for patients. Our study highlights both high- and low-yield genes associated with epilepsy and neurodevelopmental disorders, indicating which genes may be considered for molecular diagnostic testing.
Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Pruebas Genéticas , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Adolescente , Adulto , Niño , Preescolar , Hibridación Genómica Comparativa , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Técnicas de Diagnóstico Molecular , Adulto JovenRESUMEN
Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders.
Asunto(s)
Anomalías Múltiples/patología , Mutación Missense , Receptores de GABA-A/genética , Índice de Severidad de la Enfermedad , Anomalías Múltiples/genética , Adolescente , Niño , Epilepsia/genética , Epilepsia/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Trastornos Motores/genética , Trastornos Motores/patología , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Fenotipo , Trastornos del Habla/genética , Trastornos del Habla/patologíaRESUMEN
Preimplantation genetic diagnosis (PGD) is increasingly available, but how physicians view it is unclear. Internists are gatekeepers and sources of information, often treating disorders for which PGD is possible. This quantitative study surveyed 220 US internists, who were found to be divided. Many would recommend PGD for cystic fibrosis (CF; 33.7%), breast cancer (BRCA; 23.4%), familial adenomatous polyposis (FAP; 20.6%) and familial hypertrophic cardiomyopathy (19.9%), but few for social sex selection (5.2%); however, in each case, >50% were unsure. Of those surveyed, 4.9% have suggested PGD to patients. Only 7.1% felt qualified to answer patient questions about it. Internists who would refer for PGD had completed medical training less recently and, for CF, were more likely to have privately insured patients (P<0.033) and patients who reported genetic discrimination (P<0.013). Physicians more likely to refer for BRCA and FAP were less likely to have patients ask about genetic testing. This study suggests that internists often feel they have insufficient knowledge about it and may refer for PGD based on limited understanding. They view possible uses of PGD differently, partly reflecting varying ages of onset and disease treatability. These data have critical implications for training, research and practice. Preimplantation genetic diagnosis (PGD) allows embryos to be screened prior to transfer to a woman's womb for various genetic markers. This procedure raises complex medical, social, psychological and ethical issues, but how physicians view it is unclear. Internists are gatekeepers and sources of information, often treating disorders for which PGD use is possible. We surveyed 220 US internists, who were found to be divided: many would recommend PGD for cystic fibrosis (CF; 33.7%), breast cancer (BRCA; 23.4%), familial adenomatous polyposis (FAP; 20.6%), and familial hypertrophic cardiomyopathy (FHC; 19.9%) and a few for sex selection (5.2%); but in each case, >50% were unsure. Of those surveyed, 4.9% have suggested PGD to patients. Only 7.1% felt qualified to answer patient questions. Internists who would refer for PGD completed medical training less recently and, for CF, were more likely to have privately insured patients and patients who reported genetic discrimination. Physicians more likely to refer for BRCA and FAP were less likely to have patients ask about genetic testing. This quantitative study suggests that internists often feel they have insufficient knowledge and may refer for PGD based on limited understanding. They view possible uses of PGD differently, partly reflecting varying ages of onset and disease treatability. Internists should be made aware of the potential benefit of PGD, but also be taught to refer patients, when appropriate, to clinical geneticists who could then refer the patient to an IVF/PGD team. These data thus have critical implications for training, research and practice.
Asunto(s)
Medicina Interna , Diagnóstico Preimplantación/estadística & datos numéricos , Adulto , Anciano , Actitud del Personal de Salud , Femenino , Pruebas Genéticas , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Embarazo , Diagnóstico Preimplantación/psicología , Derivación y Consulta , Encuestas y Cuestionarios , Estados Unidos , Adulto JovenRESUMEN
Many questions remain concerning whether, when, and how physicians order genetic tests, and what factors are involved in their decisions. We surveyed 220 internists from two academic medical centers about their utilization of genetic testing. Rates of genetic utilizations varied widely by disease. Respondents were most likely to have ordered tests for Factor V Leiden (16.8 %), followed by Breast/Ovarian Cancer (15.0 %). In the past 6 months, 65 % had counseled patients on genetic issues, 44 % had ordered genetic tests, 38.5 % had referred patients to a genetic counselor or geneticist, and 27.5 % had received ads from commercial labs for genetic testing. Only 4.5 % had tried to hide or disguise genetic information, and <2 % have had patients report genetic discrimination. Only 53.4 % knew of a geneticist/genetic counselor to whom to refer patients. Most rated their knowledge as very/somewhat poor concerning genetics (73.7 %) and guidelines for genetic testing (87.1 %). Most felt needs for more training on when to order tests (79 %), and how to counsel patients (82 %), interpret results (77.3 %), and maintain privacy (80.6 %). Physicians were more likely to have ordered a genetic test if patients inquired about genetic testing (p < .001), and if physicians had a geneticist/genetic counselor to whom to refer patients (p < .002), had referred patients to a geneticist/genetic counselor in the past 6 months, had more comfort counseling patients about testing (p < .019), counseled patients about genetics, larger practices (p < .032), fewer African-American patients (p < .027), and patients who had reported genetic discrimination (p < .044). In a multiple logistic regression, ordering a genetic test was associated with patients inquiring about testing, having referred patients to a geneticist/genetic counselor and knowing how to order tests. These data suggest that physicians recognize their knowledge deficits, and are interested in training. These findings have important implications for future medical practice, research, and education.
Asunto(s)
Actitud del Personal de Salud , Pruebas Genéticas , Medicina Interna , Médicos/psicología , Humanos , Análisis de Regresión , Recursos HumanosRESUMEN
Cytogenetic testing using genomic microarrays presents a clinical challenge when data regarding the phenotypic consequences of the genomic alteration are not available. We describe a chromosome 13q32.3 duplication discovered by microarray testing in a fetus with a prenatally detected apparently balanced de novo translocation 46,XY,t(2;13)(q37;q32). Microarray analysis on the fetal DNA showed duplications of 384 and 564 kb at the breakpoint regions on chromosomes 2q37.3 and 13q32.3, respectively. There were no disease-associated genes in the duplicated region on chromosome 2q37. The duplicated region on chromosome 13q contains the ZIC2 gene. Haploinsufficiency of ZIC2 is known to cause holoprosencephaly and other brain malformations. Studies in the mouse models have suggested that over expression of ZIC2 may also lead to brain malformations. Fetal MRI of the brain was normal and the family elected to continue the pregnancy. An apparently normal baby was born at term. At 3 months of age a physical exam showed no abnormalities and no developmental delay. This report shows that duplication of ZIC2 is not necessarily associated with brain malformations. We also describe the phenotype from four additional patients with duplications of the region of chromosome 13 containing ZIC2 and three previously described patients with supernumerary marker chromosomes derived from distal chromosome 13. None of the eight patients had holoprosencephaly or brain malformations, indicating that duplication of ZIC2 is not associated with brain anomalies. This information will be useful for counseling in other occurrences of this duplication identified by microarray.