Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Plant Cell Environ ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38798197

RESUMEN

The knowledge of biogenesis and target regulation of the phased small interfering RNAs (phasiRNAs) needs continuous update, since the phasiRNA loci are dynamically evolved in plants. Here, hundreds of phasiRNA loci of Arabidopsis thaliana were identified in distinct tissues and under different temperature. In flowers, most of the 24-nt loci are RNA-dependent RNA polymerase 2 (RDR2)-dependent, while the 21-nt loci are RDR6-dependent. Among the RDR-dependent loci, a significant portion is Dicer-like 1-dependent, indicating the involvement of microRNAs in their expression. Besides, two TAS candidates were discovered. Some interesting features of the phasiRNA loci were observed, such as the strong strand bias of phasiRNA generation, and the capacity of one locus for producing phasiRNAs by different increments. Both organ specificity and temperature sensitivity were observed for phasiRNA expression. In leaves, the TAS genes are highly activated under low temperature. Several trans-acting siRNA-target pairs are also temperature-sensitive. In many cases, the phasiRNA expression patterns correlate well with those of the processing signals. Analysis of the rRNA-depleted degradome uncovered several phasiRNA loci to be RNA polymerase II-independent. Our results should advance the understanding on phasiRNA biogenesis and regulation in plants.

2.
BMC Microbiol ; 23(1): 330, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37936059

RESUMEN

BACKGROUND: Heavy metal contamination has been a severe worldwide environmental issue. For industrial pollutions, heavy metals rarely exist as singular entities. Hence, researches have increasingly focused on the detrimental effect of mixed heavy metal pollution. Genome analysis of Lampropedia strains predicted a repertoire of heavy metal resistance genes. However, we are still lack of experimental evidence regarding to heavy metal resistance of Lampropedia, and their potential in mixed heavy metal removal remain elusive. RESULTS: In this study, a Lampropedia aestuarii strain GYF-1 was isolated from soil samples near steel factory. Heavy metal tolerance assay indicated L. aestuarii GYF-1 possessed minimal inhibition values of 2 mM, 10 mM, 6 mM, 4 mM, 6 mM, 0.8 mM, and 4 mM for CdCl2, K2CrO4, CuCl2, NiCl2, Pb(CH3COO)2, ZnSO4, and FeCl2, respectively. The biosorption assay demonstrated its potential in soil remediation from mixed heavy metal pollution. Next the draft genome of L. aestuarii GYF-1 was obtained and annotated, which revealed strain GYF-1 are abundant in heavy metal resistance genes. Further evaluations on differential gene expressions suggested adaptive mechanisms including increased lipopolysaccharides level and enhanced biofilm formation. CONCLUSION: In this study, we demonstrated a newly isolated L. aestuarii GYF-1 exhibited mixed heavy metal resistance, which proven its capability of being a potential candidate strain for industrial biosorption application. Further genome analysis and differential gene expression assay suggest enhanced LPS and biofilm formation contributed to the adaptation of mixed heavy metals.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Suelo , Contaminantes del Suelo/análisis
3.
BMC Genomics ; 22(1): 93, 2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33516199

RESUMEN

BACKGROUND: The microRNAs(miRNA)-derived secondary phased small interfering RNAs (phasiRNAs) participate in post-transcriptional gene silencing and play important roles in various bio-processes in plants. In rice, two miRNAs, miR2118 and miR2275, were mainly responsible for triggering of 21-nt and 24-nt phasiRNAs biogenesis, respectively. However, relative fewer phasiRNA biogenesis pathways have been discovered in rice compared to other plant species, which limits the comprehensive understanding of phasiRNA biogenesis and the miRNA-derived regulatory network. RESULTS: In this study, we performed a systematical searching for phasiRNA biogenesis pathways in rice. As a result, five novel 21-nt phasiRNA biogenesis pathways and five novel 24-nt phasiRNA biogenesis pathways were identified. Further investigation of their regulatory function revealed that eleven novel phasiRNAs in 21-nt length recognized forty-one target genes. Most of these genes were involved in the growth and development of rice. In addition, five novel 24-nt phasiRNAs targeted to the promoter of an OsCKI1 gene and thereafter resulted in higher level of methylation in panicle, which implied their regulatory function in transcription of OsCKI1,which acted as a regulator of rice development. CONCLUSIONS: These results substantially extended the information of phasiRNA biogenesis pathways and their regulatory function in rice.


Asunto(s)
MicroARNs , Oryza , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Oryza/genética , ARN de Planta/genética , ARN Interferente Pequeño
4.
Brief Bioinform ; 19(6): 1317-1324, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-28633390

RESUMEN

Most of the microRNAs (miRNAs) play their regulatory roles through posttranscriptional target decay or translational inhibition. For both plants and animals, these regulatory events were previously considered to take place in cytoplasm, as mature miRNAs were observed to be exported to the cytoplasm for Argonaute (AGO) loading and subsequent target binding. Recently, this notion was challenged by increasing pieces of evidence in the animal cells that uncovered the nuclear importation and action of the AGO-associated miRNAs. The nuclear-localized regulatory mode was also reported for the plant miRNAs. However, evidence is still lacking to show the universality and conservation of the miRNA-mediated regulation in the plant nuclei. Here, we introduced a bioinformatics workflow for genome-wide investigation of miRNA-guided, cleavage-based regulation of the nascent nuclear transcripts. Facilitated by the tool package PmiRNTSA (Plant microRNA-mediated nascent transcript slicing analyzer), plant biologists could perform a comprehensive search for the miRNA slicing sites located within the introns or the exon-intron/intron-exon junctions of the target transcripts, which are supported by degradome sequencing data. The results enable the researchers to examine the co-transcriptional regulatory model of the miRNAs for a specific plant species. Moreover, a case study was performed to search for the slicing sites located within the exon-intron/intron-exon junctions in two model plants. A case study was performed to show the feasibility and reliability of our workflow. Together, we hope that this work could inspire much more innovative research efforts to expand the current understanding of the miRNA action modes in plants.


Asunto(s)
Núcleo Celular/genética , Biología Computacional , MicroARNs/genética , ARN Mensajero/genética , ARN de Planta/genética , Sitios de Unión , Exones , Intrones , MicroARNs/metabolismo , Empalme del ARN , Flujo de Trabajo
5.
RNA Biol ; 17(9): 1223-1227, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32338184

RESUMEN

The plant RNA degradome was defined as an aggregate of the RNA fragments degraded from various biochemical pathways, such as RNA turnover, maturation and quality surveillance. In recent years, the degradome sequencing (degradome-seq) libraries became a rich storehouse for researchers to study on RNA processing and regulation. Here, we provided a brief overview of the uses of degradome-seq data in plant RNA biology, especially on non-coding RNA processing and small RNA-guided target cleavages. Some novel applications in RNA research area, such as in vivo mapping of the endoribonucleolytic cleavage sites, identification of conserved motifs at the 5' ends of the uncapped RNA fragments, and searching for the protein-binding regions on the transcripts, were also mentioned. More importantly, we proposed a model for the biologists to deduce the contributions of transcriptional and/or post-transcriptional regulation to gene differential expression based on degradome-seq data. Finally, we hope that the degradome-based analytical methods could be widely applied for the studies on RNA biology in eukaryotes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Plantas/genética , Estabilidad del ARN , ARN de Planta/genética , Biología Computacional/métodos , Bases de Datos Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , Procesamiento Postranscripcional del ARN
6.
Genomics ; 111(6): 1668-1675, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30458274

RESUMEN

Long non-coding RNAs (lncRNAs) are the "dark matters"involved in gene regulation with complex mechanisms. However, the functions of most lncRNAs remain to be determined. Our previous work revealed a massive number of degradome-supported cleavage signatures on Arabidopsis lncRNAs. Some of them have been confirmed associated with miRNAs-like sRNAs production, while others without long stem structure remain unexplored. A systematical search for phasiRNAs generating ability of these lncRNAs was conducted. Eight novel small RNA triggered lncRNA-phasiRNA pathways were discovered and three of them were found to be conserved in Arabidopsis, Oryza sativa, Glycine max and Gossypium hirsutum. Besides, Five novel ta-siRNAs derived from these lncRNAs were further identified to be involved in the regulation of plant development, stress responses and aromatic amino acids synthesis. These results substantially expanded the gene regulation mechanisms of lncRNAs.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sitios Genéticos , ARN Largo no Codificante/genética , ARN de Planta/genética , Arabidopsis/metabolismo , Gossypium/genética , Gossypium/metabolismo , Oryza/genética , Oryza/metabolismo , ARN Largo no Codificante/biosíntesis , ARN de Planta/biosíntesis , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , Glycine max/genética , Glycine max/metabolismo
7.
BMC Genomics ; 20(1): 133, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760208

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) constitute a well-known small RNA (sRNA) species with important regulatory roles. To date, several bioinformatics tools have been developed for large-scale prediction of miRNAs based on high-throughput sequencing data. However, some of these tools become invalid without reference genomes, while some tools cannot supply user-friendly outputs. Besides, most of the current tools focus on the importance of secondary structures and sRNA expression patterns for miRNA prediction, while they do not pay attention to miRNA processing for reliability check. RESULTS: Here, we reported a pipeline PmiRDiscVali for plant miRNA discovery and partial validation. This pipeline integrated the popular tool miRDeep-P for plant miRNA prediction, making PmiRDiscVali compatible for both reference-based and de novo predictions. To check the prediction reliability, we adopted the concept that the miRNA processing intermediates could be tracked by degradome sequencing (degradome-seq) during the development of PmiRDiscVali. A case study was performed by using the public sequencing data of Dendrobium officinale, in order to show the clear and concise presentation of the prediction results. CONCLUSION: Summarily, the integrated pipeline PmiRDiscVali, featured with degradome-seq data-based validation and vivid result presentation, should be useful for large-scale identification of plant miRNA candidates.


Asunto(s)
Biología Computacional , MicroARNs/genética , Plantas/genética , ARN de Planta/genética , Dendrobium/genética , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Polimerasa II/genética , Transcripción Genética , Transcriptoma
8.
Biosci Biotechnol Biochem ; 83(2): 233-242, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30355067

RESUMEN

MicroRNAs (miRNAs) are important and ubiquitous regulators of gene expression in eukaryotes. However, the information about miRNAs population and their regulatory functions involving in soybean seed development remains incomplete. Base on the Dicer-like1-mediated cleavage signals during miRNA processing could be employed for novel miRNA discovery, a genome-wide search for miRNA candidates involved in seed development was carried out. As a result, 17 novel miRNAs, 14 isoforms of miRNA (isomiRs) and 31 previously validated miRNAs were discovered. These novel miRNAs and isomiRs represented tissue-specific expression and the isomiRs showed significantly higher abundance than that of their miRNA counterparts in different tissues. After target prediction and degradome sequencing data-based validation, 13 novel miRNA-target pairs were further identified. Besides, five targets of 22-nt iso-gma-miR393h were found to be triggered to produce secondary trans-acting siRNA (ta-siRNAs). Summarily, our results could expand the repertoire of miRNAs with potentially important functions in soybean.


Asunto(s)
Genoma de Planta , Glycine max/genética , MicroARNs/genética , Semillas/crecimiento & desarrollo , Semillas/genética , Cotiledón/genética , Minería de Datos/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Interferencia de ARN , Diseño de Software , Glycine max/embriología
9.
Brief Bioinform ; 14(3): 293-301, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22811545

RESUMEN

Most plant microRNAs (miRNAs) perform their repressive regulation through target cleavages. The resulting slicing sites on the target transcripts could be mapped by sequencing of the 3'-cleavage remnants, called degradome sequencing. The high sequence complementarity between miRNAs and their targets has greatly facilitated the development of the target prediction tools for plant miRNAs. The prediction results were then subjected to degradome sequencing data-based validation, through which numerous miRNA-target interactions have been extracted. However, some drawbacks are unavoidable when using this forward approach. Essentially, a known list of plant miRNAs should be obtained in advance of target prediction and validation. This becomes an obstacle to discover novel miRNAs and their targets. Here, after reviewing the current available algorithms for reverse identification of miRNA-target pairs in plants, a case study was performed by using a newly established framework with adjustable parameters. In this workflow, integration of degradome and ARGONAUTE 1-enriched small RNA sequencing data was recommended to do a relatively comprehensive and reliable search. Besides, several computational algorithms such as BLAST, target plots and RNA secondary structure prediction were used. The results demonstrated the prevalent utility of the reversed approach for uncovering miRNA-target interactions in plants.


Asunto(s)
MicroARNs/metabolismo , Plantas/genética , ARN de Planta/metabolismo , Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/genética , ARN de Planta/genética
10.
J Exp Bot ; 65(22): 6293-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25240066

RESUMEN

To maintain normal growth and development in a plant, gene expression must be under strict surveillance. One of the post-transcriptional regulatory pathways involves small RNA (sRNA)-guided, Argonaute (AGO) protein complex-mediated target cleavages. MicroRNAs (miRNAs) are the well-known sRNA species participating in the cleavage-based regulation of gene expression. In plants, most miRNAs are incorporated into AGO1-associated silencing complexes. Thus, the AGO1 protein is considered to be the most important slicer for sRNA-mediated target cleavages. Previous phylogenetic analysis revealed that AGO1, AGO5, and AGO10 belonged to the same clade in Arabidopsis (Arabidopsis thaliana). In addition, experimental evidence pointed to the possibility that AGO2, AGO7, and AGO10 were implicated in specific miRNA-mediated regulatory pathways. To investigate the potential slicer activities of AGO2, AGO5, AGO7, and AGO10, a comprehensive search was performed for the sRNAs enriched in the four AGO proteins in Arabidopsis. A total of 3 499, 1 618, 4 632, and 63 sRNAs are enriched in AGO2, AGO5, AGO7, and AGO10, respectively. Interestingly, several miRNAs were found to be enriched in AGO2 or AGO5. Transcriptome-wide target identification based on degradome sequencing data uncovered that a number of sRNAs enriched in the four AGOs could perform target cleavages like AGO1-associated miRNAs in plants. Based on the above results, the opinion was put forward that not only AGO1, but also AGO2, AGO5, AGO7, and AGO10 might be essential for the sRNA-mediated regulation of gene expression in plants.


Asunto(s)
Proteínas Argonautas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas/genética , ARN de Planta/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
11.
J Exp Bot ; 65(2): 395-400, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336345

RESUMEN

In plants, Dicer-like 1 (DCL1)-mediated two-step cleavages are essential for the processing of microRNA (miRNA) gene products. Interestingly, DCL1 has been indicated to be involved in the production of many small RNAs (sRNAs) that cannot be classified as canonical miRNAs. However, genomic and functional information on the non-miRNA, DCL1-dependent sRNAs is still limited. Here, we propose a secondary structure-based approach for identification of the precursors containing novel DCL1-dependent sRNA loci. To demonstrate the utility of the workflow: first, 5898 DCL1-dependent sRNAs of 20-24 nucleotides were identified from the sRNA high-throughput sequencing data sets prepared from rice DCL1 RNA interference transgenic lines. Those perfectly mapped to the rice pre-miRNAs (precursor microRNAs) were removed. The remaining 5795 sRNAs were then mapped onto the rice genome, obtaining 30 902 perfectly matched loci belonging to 2310 sRNAs. A total of 4631 clusters of sRNA loci were defined for secondary structure prediction by using RNAfold. The prediction results generated by two algorithms, namely MFE (minimum free energy) and centroid, were manually compared to identify the conserved long-stem structures containing DCL1-dependent sRNA loci. For the purpose of a case study, a portion of the prediction results was screened manually. As a result, 60 clusters displayed great potential for forming featured long-stem structures for the generation of DCL1-dependent sRNAs. Together, the results indicate that the proposed workflow is applicable for the identification of novel DCL1-dependent sRNA loci on plant genomes.


Asunto(s)
Sitios Genéticos/genética , Genoma de Planta/genética , Conformación de Ácido Nucleico , ARN de Planta/química , ARN de Planta/metabolismo , Ribonucleasa III/metabolismo , Oryza/genética
12.
RNA Biol ; 11(4): 373-90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24717238

RESUMEN

The biological relevance of long non-coding RNAs (lncRNAs) is emerging. Whether the lncRNAs could form structured precursors for small RNAs (sRNAs) production remains elusive. Here, 172 713 DCL1 (Dicer-like 1)-dependent sRNAs were identified in Arabidopsis. Except for the sRNAs mapped onto the microRNA precursors, the remaining ones led us to investigate their originations. Intriguingly, 65 006 sRNAs found their loci on 5891 lncRNAs. These sRNAs were sent to AGO (Argonaute) enrichment analysis. As a result, 1264 sRNAs were enriched in AGO1, which were then subjected to target prediction. Based on degradome sequencing data, 109 transcripts were validated to be targeted by 96 sRNAs. Besides, 44 lncRNAs were targeted by 23 sRNAs. To further support the origination of the DCL1-dependent sRNAs from lncRNAs, we searched for the degradome-based cleavage signals at either ends of the sRNA loci, which were supposed to be produced during DCL1-mediated processing of the long-stem structures. As a result, 63 612 loci were supported by degradome signatures. Among these loci, 6606 reside within the dsRNA-seq (double-stranded RNA sequencing) read-covered regions of 100 nt or longer. These regions were subjected to secondary structure prediction. And, 43 regions were identified to be capable of forming highly complementary long-stem structures. We proposed that these local long-stem structures could be recognized by DCL1 for cropping, thus serving as the sRNA precursors. We hope that our study could inspire more research efforts to study on the biological roles of the lncRNAs in plants.


Asunto(s)
Arabidopsis/genética , ARN Largo no Codificante/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biología Computacional , Bases de Datos de Ácidos Nucleicos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Secuencias Invertidas Repetidas , MicroARNs/genética , Conformación de Ácido Nucleico , ARN Bicatenario , ARN Largo no Codificante/química , ARN Largo no Codificante/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo
13.
BMC Genomics ; 14: 510, 2013 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-23889819

RESUMEN

BACKGROUND: The root systems play essential roles for plants to anchorage to the soil, and to exploit the mineral and water resources. The molecular mechanisms underlying root development have been extensively studied to improve root system architecture, especially for the crops. Several microRNA (miRNA) families have been demonstrated to be involved in plant root development. However, whether the other small RNA (sRNA) species, which occupy a dominant portion of the plant endogenous sRNA population, possess potential roles in root development remains unclear. RESULTS: In this study, by using sRNA high-throughput sequencing data, we made a comparison of the sRNA accumulation levels between the rice root tips and the whole roots. The sRNAs highly accumulated in the root tips and in the whole roots were extracted respectively. After Argonaute 1 (AGO1) enrichment analysis, the sRNAs with great potential of performing target cleavages were included for target prediction and degradome sequencing data-based validation. As a result, lists of the targets regulated by the AGO1-enriched sRNAs were obtained for both the root tips and the whole roots. Further evidences were identified from microarray data of the target genes to support some of the sRNA-target interactions. Specifically, the expression patterns of certain target genes in the root tips and the whole roots were contrary to those of the regulating sRNAs. Besides, several targets were indicated to play important roles in root development based on literature mining. CONCLUSIONS: Taken together, the regulatory networks mediated by the sRNAs highly accumulated in the root tips or in the whole roots could advance our current understanding of the sRNA-involved molecular mechanisms underlying rice root development. And, the sRNA-target lists could serve as the basis for further functional investigations.


Asunto(s)
Redes Reguladoras de Genes , Oryza/genética , Raíces de Plantas/metabolismo , ARN de Planta/genética , Genes de Plantas
14.
Brief Bioinform ; 12(6): 645-59, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21262742

RESUMEN

Current achievements in plant microRNA (miRNA) research area are inspiring. Molecular cloning and functional elucidation have greatly advanced our understanding of this small RNA species. As one of the ultimate goals, many research efforts devoted to draw a comprehensive view of miRNA-mediated gene regulatory networks in plants. Numerous bioinformatics tools competent for network analysis have been available. However, the most important point for network construction is to obtain reliable analytical results based on sufficient experimental data. Here, we introduced a general workflow to retrieve and analyze the desired data sets that serve as the cornerstones for network construction. For the upstream analyses of miRNA genes, the sequence feature of miRNA promoters should be characterized. And, regulatory relationships between transcription factors (TFs) and miRNA genes need to be investigated. For the downstream part, we emphasized that the high-throughput degradome sequencing data were especially useful for genuine miRNA-target pair identification. Functional characterization of the miRNA targets is essential to provide deep biological insights into certain miRNA-mediated pathways. For miRNAs themselves, studies on their organ- or tissue-specific expression patterns and the mechanism of self-regulation were discussed. Besides, exhaustive literature mining is required to further support or improve the established networks. It is desired that the introduced framework for miRNA-mediated network construction is timely and useful and could inspire more research efforts in the miRNA research area.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs/química , Biología Computacional/métodos , Plantas/genética , Factores de Transcripción/química , Factores de Transcripción/genética
15.
New Phytol ; 197(2): 441-453, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23121287

RESUMEN

Although huge amounts of high-throughput sequencing (HTS) data are available, limited systematic analyses have been performed by integrating these valuable resources. Based on small RNA (sRNA), RNA and degradome HTS data, the sRNAs specifically expressed at vegetative and reproductive stages were identified separately in rice. Two distinct groups of sRNA HTS data, which were prepared during the vegetative and the reproductive stages, were utilized to extract stage-specific sRNAs. Degradome sequencing data were employed for sRNA target validation. RNA sequencing data were used to construct expression-based, sRNA-mediated networks. As a result, 26 microRNAs and 413 sRNAs were specifically expressed at the vegetative stage, and 79 microRNAs and 539 sRNAs were specifically expressed at the reproductive stage. In addition to the microRNAs, numerous stage-specific sRNAs enriched in ARGONAUTE1 showed great potential to perform cleavage-based repression on the targets. Several stage-specific sRNAs were indicated to result from the wobble effect of Dicer-like 1-mediated processing of microRNA precursors. The expression patterns of the sRNA targets, and the stage-specific cleavage signals strongly indicated the reliability of the constructed networks. A set of rice stage-specific sRNAs along with the regulatory cascades, which have great potential in regulating specific developmental stages, were provided for further investigation.


Asunto(s)
Redes Reguladoras de Genes/genética , Oryza/crecimiento & desarrollo , Oryza/genética , ARN de Planta/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , MicroARNs/genética , MicroARNs/metabolismo , Estabilidad del ARN/genética , ARN de Planta/metabolismo , Reproducibilidad de los Resultados , Reproducción/genética , Análisis de Secuencia de ARN
16.
BMC Genomics ; 13: 197, 2012 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-22613869

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play an essential role in gene regulation in plants. At the same time, the expression of miRNA genes is also tightly controlled. Recently, a novel mechanism called "target mimicry" was discovered, providing another layer for modulating miRNA activities. However, except for the artificial target mimics manipulated for functional studies on certain miRNA genes, only one example, IPS1 (Induced by Phosphate Starvation 1)-miR399 was experimentally confirmed in planta. To date, few analyses for comprehensive identification of natural target mimics have been performed in plants. Thus, limited evidences are available to provide detailed information for interrogating the questionable issue whether target mimicry was widespread in planta, and implicated in certain biological processes. RESULTS: In this study, genome-wide computational prediction of endogenous miRNA mimics was performed in Arabidopsis and rice, and dozens of target mimics were identified. In contrast to a recent report, the densities of target mimic sites were found to be much higher within the untranslated regions (UTRs) when compared to those within the coding sequences (CDSs) in both plants. Some novel sequence characteristics were observed for the miRNAs that were potentially regulated by the target mimics. GO (Gene Ontology) term enrichment analysis revealed some functional insights into the predicted mimics. After degradome sequencing data-based identification of miRNA targets, the regulatory networks constituted by target mimics, miRNAs and their downstream targets were constructed, and some intriguing subnetworks were further exploited. CONCLUSIONS: These results together suggest that target mimicry may be widely implicated in regulating miRNA activities in planta, and we hope this study could expand the current understanding of miRNA-involved regulatory networks.


Asunto(s)
Arabidopsis/genética , Redes Reguladoras de Genes/genética , MicroARNs/metabolismo , Oryza/genética , Arabidopsis/metabolismo , Bases de Datos Genéticas , Sistemas de Lectura Abierta , Oryza/metabolismo , ARN de Planta/metabolismo , Programas Informáticos , Regiones no Traducidas
17.
RNA Biol ; 9(3): 249-53, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22336711

RESUMEN

In this survey, we did a large-scale re-examination of the currently registered plant microRNAs (miRNAs) in miRBase (release 17), which were annotated based on the already established criteria. Huge public small RNA (sRNA) high-throughput sequencing (HTS) data sets were employed to interrogate the accuracy of the miRBase registries based on the secondary structures of the miRNA precursors and the expression levels of the miRNAs and the miRNA*s. Our results raised the caveat that the current miRNA lists in miRBase should be carefully refined, and more strict criteria should be implemented for new miRNA registration. Through this work, we proposed a structure- and expression-based strategy to validate a set of defined miRNA genes, or even to annotate novel ones based on currently available sRNA HTS data sets. We also hope to inspire further research efforts on the manual refinement of the current miRNA gene lists.


Asunto(s)
Biología Computacional , MicroARNs/química , MicroARNs/genética , ARN de Planta/química , ARN de Planta/genética , Biología Computacional/métodos , Regulación de la Expresión Génica de las Plantas , Conformación de Ácido Nucleico
18.
J Plant Physiol ; 270: 153636, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35124290

RESUMEN

miRBase was established as an authoritative microRNA (miRNA) database with a uniform nomenclature system and a searchable web interface. Recent popularization of the next-generation sequencing technology in small RNA cloning led to an explosive growth of the miRNA repository. Although a specific definition system has been proposed for the plant miRNAs, the quality of the plant miRNA registries deposited in miRBase is largely dependent on the submitters. With the growing concerns over the annotation quality, a set of criteria for identification of the high-confidence (HC) miRNAs was recently developed by miRBase. Since miRNAs could serve as a powerful tool for crop genetic improvement and breeding, we present a brief overview of the miRBase-registered crop miRNAs in this study. A total of 54 plants were identified from the 82 Viridiplantae species in the current version of miRBase, and were regarded as the crops. A total of 6316 precursors encoding 7422 mature miRNAs (miRBase release 22.1) were included in our survey. Based on the HC annotation criteria, we performed structure- and sequencing data-based analyses of the confidence of the crop miRNAs. According to the results, we propose suggestions for improvements of the HC annotation system and, moreover, discuss strategies for creating and maintaining an HC miRNA repository of crops. Finally, we hope that this study inspires more efforts devoted to HC miRNA discoveries for crop research.

19.
J Plant Physiol ; 270: 153632, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35114616

RESUMEN

The importance of the evolutionarily conserved Argonaute (AGO) proteins has been well recognized for their involvement in the RNA interference pathways. Recent discoveries in animals demonstrated that AGOs also participate in alternative splicing (AS). Motivated by the question whether the AGO proteins are also functional in RNA splicing in plants, we searched for the introns excised through an AGO-dependent manner in Arabidopsis (Arabidopsis thaliana). RNA sequencing (RNA-seq) data analysis uncovered hundreds of the introns up- or down-regulated in the ago1 and ago4 mutants, respectively. For different genes, AGOs might play either a positive or a negative role in intron excision, which was further validated by reverse transcription-polymerase chain reaction (RT-PCR). Some introns were specifically regulated by one of the AGO proteins, while some were regulated by both AGOs. Besides, a large portion of the AGO-dependent introns were organ-specifically regulated. RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) revealed that both AGOs preferentially bound to the intronic regions, supporting their high intron binding affinities. Immunoprecipitation followed by mass spectrometry (IP-MS) was performed to identify the proteins potentially interacting with the two AGOs. Six novel interactors (two interacting with AGO1 and four with both AGOs) involved in mRNA binding were uncovered, which might facilitate AGO-intron recognition. Analysis of the RNA-seq data from the rice (Oryza sativa) ago18 mutants revealed that hundreds of the introns were expressed in an AGO18-dependent manner. In summary, our results point to the novel role of the plant AGOs in intron splicing, paving a way for further studies on the mechanisms underlying AGO-mediated RNA splicing.

20.
RNA Biol ; 8(6): 1124-48, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21955495

RESUMEN

The critical biological roles of microRNAs (miRNAs) have been well recognized. However, knowledge on the regulatory activities of miRNA*s is limited. Although several studies pointed to the capacity of this small RNA species to repress target genes in animals, few related analyses were performed in plants. Here, we set out to uncover the repressive effects of miRNA*s on their targets in both Arabidopsis and rice. Systemic identification of miRNA*s was performed through secondary structure-based predictions and expression level-based verification. The targets of the miRNA*s were predicted and further filtered based on degradome sequencing data, resulting in comprehensive miRNA*--target lists with high reliability. Besides, comprehensive miRNA--target lists were also obtained. The phenomenon that one transcript was targeted by two or more miRNA(*)s was observed, which was defined as co-regulation. Finally, comprehensive miRNA- and miRNA*-mediated regulatory networks were constructed. Further investigation of some specific subnetworks implied the utility of these networks for biologists. This study could broaden the current understanding of miRNA gene-mediated regulation in plants.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , MicroARNs/metabolismo , Oryza/genética , Secuencia de Bases , MicroARNs/química , Modelos Genéticos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA