Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Fertil Dev ; 33(5): 328-337, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33602390

RESUMEN

This study aimed to analyse global metabolomic changes associated with trans-resveratrol (RSV) treatment in mice with cryptorchidism using untargeted metabolomics. Cryptorchidism was established surgically in Kunming mice, which were then treated with 20µg g-1 day-1, s.c., RSV for 35 consecutive days. Typical manifestations of spermatogenesis arrest were seen in mice with cryptorchidism, and RSV treatment for 35 days restored spermatogenesis. Liquid chromatography-tandem mass spectrometry was used to profile the metabolome of testes from mice in the control (non-cryptorchid, untreated), cryptorchid and RSV-treated cryptorchid groups. In all, 1386 and 179 differential metabolites were detected in the positive and negative modes respectively. Seven and six potential biomarkers were screened for spermatogenesis arrest and restoration respectively. Pathway analysis showed changes in 197 metabolic pathways. The hexosamine biosynthesis pathway was inhibited in the cryptorchid group, which probably resulted in a decrease in the end product, uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Immunoblot analysis showed that total testicular protein O-linked ß-N-acetylglucosamine glycosylation was related to spermatogenesis arrest, further indicating a decrease in UDP-GlcNAc in the cryptorchid group. Thus, untargeted metabolomics revealed the biochemical pathways associated with the restoration of metabolic status in the cryptorchid group following RSV treatment and the findings could be used to monitor the response to RSV treatment. This study provides a meaningful foundation for the future clinical application of RSV in the treatment of spermatogenesis dysfunction.


Asunto(s)
Criptorquidismo/tratamiento farmacológico , Criptorquidismo/fisiopatología , Metabolómica , Resveratrol/uso terapéutico , Testículo/metabolismo , Animales , Biomarcadores/análisis , Criptorquidismo/etiología , Glicosilación/efectos de los fármacos , Masculino , Ratones , Espermatogénesis/efectos de los fármacos , Testículo/química , Testículo/patología , Uridina Difosfato N-Acetilglucosamina/metabolismo
2.
Cell Death Discov ; 9(1): 318, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640735

RESUMEN

Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance.

3.
Int Immunopharmacol ; 124(Pt B): 111025, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37827056

RESUMEN

Oxaliplatin is a chemotherapy drug currently utilized in the treatment of advanced cancer patients. However, its tolerability poses a limitation to its clinical application. Studies have demonstrated that the presence of tumor-associated macrophages is positively correlated with poor prognosis in various solid tumors, including hepatocellular carcinoma (HCC), and is a significant factor contributing to oxaliplatin resistance. Therefore, targeting tumor-associated macrophages may be an effective strategy to improve the efficacy of oxaliplatin in the treatment of HCC patients. CD24 is a novel target for tumor therapy that can interact with the inhibitory receptor Siglec-10 on tumor-associated macrophages, transmitting immune inhibitory signals and inhibiting macrophage phagocytosis function. In this study, we utilized RNAi technology to inhibit the expression of CD24 in tumor cells and combined it with oxaliplatin, resulting in reduced tumor invasion, migration, and proliferation, as well as increased cell apoptosis. Furthermore, immunofluorescence and flow cytometry results indicated that both the single treatment group and combination treatment group enhanced the infiltration of immune cells. This study presents a novel approach to identifying combination therapy and targets for the clinical treatment of HCC with oxaliplatin.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , ARN Interferente Pequeño/genética , Proteínas Portadoras , Línea Celular Tumoral , Antígeno CD24/genética , Antígeno CD24/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA