Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioorg Chem ; 147: 107378, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643562

RESUMEN

Alzheimer's disease (AD) is an enigmatic neurological illness that offers few treatment options. Recent exploration has highlighted the crucial connection of the Wnt signaling pathway in AD pathogenesis, shedding light on potential therapeutic targets. The present study focuses on the dual targeting of glycogen synthase kinase-3ß (GSK-3ß) and casein kinase-1δ (CK-1δ) within the framework of the Wnt signaling pathway as a possible technique for AD intervention. GSK-3ß and CK-1δ are multifunctional kinases known for their roles in tau hyperphosphorylation, amyloid processing, and synaptic dysfunction, all of which are major hallmarks of Alzheimer's disease. They are intricately linked to Wnt signaling, which plays a pivotal part in sustaining neuronal function and synaptic plasticity. Dysregulation of the Wnt pathway in AD contributes to cognitive decline and neurodegeneration. This review delves into the molecular mechanisms by which GSK-3ß and CK-1δ impact the Wnt signaling pathway, elucidating their roles in AD pathogenesis. We discuss the potential of small-molecule inhibitors along with their SAR studies along with the multi-targetd approach targeting GSK-3ß and CK-1δ to modulate Wnt signaling and mitigate AD-related pathology. In summary, the dual targeting of GSK-3ß and CK-1δ within the framework of the Wnt signaling pathway presents an innovative and promising avenue for future AD therapies, offering new hope for patients and caregivers in the quest to combat this challenging condition.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Vía de Señalización Wnt , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Humanos , Vía de Señalización Wnt/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Quinasa Idelta de la Caseína/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Animales , Relación Estructura-Actividad
2.
Cell Biochem Funct ; 42(4): e4037, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38736204

RESUMEN

Diabetes mellitus is associated with secondary complications such as diabetic retinopathy (DR), nephropathy (DN), and cardiomyopathy (DCM), all of which significantly impact patient health. Intercellular adhesion molecule-1 (ICAM-1) has been implicated in inflammatory responses and endothelial dysfunction, both crucial in the pathogenesis of these complications. The goal of this review is to investigate at potential therapy methods that target ICAM-1 pathways and to better understand the multifaceted role of ICAM-1 in secondary diabetic problems. A meticulous analysis of scholarly literature published globally was conducted to examine ICAM-1involvement in inflammatory processes, endothelial dysfunction, and oxidative stress related to diabetes and its complications. Elevated ICAM-1 levels are strongly associated with augmented leukocyte adhesion, compromised microvascular function, and heightened oxidative stress in diabetes. These pathways contribute significantly to DR, DN, and DCM pathogenesis, highlighting ICAM-1 as a key player in their progression. Understanding ICAM-1 role in secondary diabetic complications offers insights into novel therapeutic strategies. Targeting ICAM-1 pathways may mitigate inflammation, improve endothelial function, and ultimately attenuate diabetic complications, thereby enhancing patient health outcomes. Continued research in this area is crucial for developing effective targeted therapies.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Complicaciones de la Diabetes/metabolismo , Estrés Oxidativo , Animales , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Inflamación/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Retinopatía Diabética/etiología
3.
Infect Disord Drug Targets ; 24(7): e020224226666, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38305295

RESUMEN

The global prevalence of fungal infections is alarming in both the pre- and post- COVID period. Due to a limited number of antifungal drugs, there are hurdles in treatment strategies for fungal infections due to toxic potential, drug interactions, and the development of fungal resistance. All the antifungal targets (existing and newer) and pipeline molecules showing promise against these targets are reviewed. The objective was to predict or repurpose phyto-based antifungal compounds based on a dual target inhibition approach (Sterol-14-α- demethylase and HSP-90) using a case study. In pursuit of repurposing the phytochemicals as antifungal agents, a team of researchers visited Aravalli Biodiversity Park (ABP), Delhi, India, to collect information on available medicinal plants. From 45 plants, a total of 1149 ligands were collected, and virtual screening was performed using Schrodinger Suite 2016 software to get 83 hits against both the target proteins: Sterol-14-α-demethylase and HSP-90. After analysis of docking results, ligands were selected based on their interaction against both the target proteins and comparison with respective standard ligands (fluconazole and ganetespib). We have selected Isocarthamidin, Quercetin and Boeravinone B based on their docking score and binding interaction against the HSP-90 (Docking Score -9.65, -9.22 and -9.21, respectively) and 14-α-demethylase (Docking Score -9.19, -10.76 and -9.74 respectively). The docking protocol was validated and MM/GBSA studies depicted better stability of selected three ligands (Isocarthamidin, Quercetin, Boeravinone B) complex as compared to standard complex. Further, MD simulation studies were performed using the Desmond (67) software package version 2018-4. All the findings are presented as a case study for the prediction of dual targets for the repurposing of certain phytochemicals as antifungal agents.


Asunto(s)
Antifúngicos , Reposicionamiento de Medicamentos , Simulación del Acoplamiento Molecular , Fitoquímicos , Antifúngicos/farmacología , Antifúngicos/química , India , Humanos , Fitoquímicos/farmacología , Fitoquímicos/química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/química , Plantas Medicinales/química , Quercetina/farmacología , Quercetina/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Micosis/tratamiento farmacológico , Micosis/microbiología
4.
ACS Infect Dis ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150887

RESUMEN

Benzothiazole-bearing compounds have emerged as potential noncovalent DprE1 (decaprenylphosphoryl-ß-d-ribose-2'-epimerase) inhibitors active against Mycobacterium tuberculosis. Based on structure-based virtual screening (PDB ID: 4KW5), a focused library of thirty-one skeletally diverse benzothiazole amides was prepared, and the compounds were assessed for their antitubercular activity against M.tb H37Ra. Most potent compounds 3b and 3n were further evaluated against the M.tb H37Rv strain by the microdilution assay method. Among the compounds evaluated, bis-benzothiazole amide 3n emerged as a hit molecule and demonstrated promising antitubercular activity with minimum inhibitory concentration (MIC) values of 0.45 µg/mL and 8.0 µg/mL against H37Ra and H37Rv, respectively. Based on the preliminary hit molecule (3n), a focused library of 12 more bis-benzothiazole amide derivatives was further prepared by varying the substituents on either side to obtain new leads and generate a structure-activity relationship (SAR). Among these compounds, 6a, 6c, and 6d demonstrated remarkable antitubercular activity with MIC values of 0.5 µg/mL against H37Ra and 1.0, 2.0, and 8.0 µg/mL against H37Rv, respectively. The most active compound, 6a, also displayed significant efficacy against four drug-resistant tuberculosis strains. Compound 6a was assessed for in vitro cytotoxicity against the HepG2 cell line, and it displayed insignificant cytotoxicity. Furthermore, time-kill kinetic studies demonstrated time- and dose-dependent bactericidal activity of this compound. The GFP release assay revealed that compound 6a targets the inhibition of a cell wall component. SNPs in dprE-1 gene assessment revealed that compound 6a binds to tyrosine at position 314 of DprE1 and replaces it with histidine, causing resistance similar to that of standard TCA1. In silico docking studies further suggest that the strong noncovalent interactions of these compounds may lead to the development of potent noncovalent DprE1 inhibitors.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39162282

RESUMEN

BACKGROUND: Benzo[d]thiazoles represent a significant class of heterocyclic com-pounds renowned for their diverse pharmacological activities, including analgesic and anti-inflammatory properties. This molecular scaffold holds substantial interest among medicinal chemists owing to its structural versatility and therapeutic potential. Incorporating the benzo[d]thiazole moiety into drug molecules has been extensively investigated as a strategy to craft novel therapeutics with heightened efficacy and minimized adverse effects. AIMS: The aim of the present research work was to design, synthesize and characterize the new benzo[d]thiazol-2-amine derivatives as potent analgesic and anti-inflammatory agents. MATERIALS AND METHODS: The synthesis of the presented benzo[d]thiazol-2-amine derivatives was performed by condensing-(4-chlorobenzylidene) benzo[d]thiazol-2-amine with a number of substituted phenols in the presence of potassium iodide and anhydrous potassium carbonate in dry acetone. IR spectroscopy, 1HNMR spectroscopy, 13CNMR spectroscopy and Mass spectroscopy methods were used to characterize the structural properties of all 13 newly syn-thesized derivatives. The molecular properties of these newly synthesized derivatives were estimated to study the attributes of drug-like candidates. Benzo[d]thiazol-2-amine derivatives were molecularly docked with selective enzymes COX-1 and COX-2. Analgesic and anti-inflammatory activities of synthesized compounds were evaluated by us-ing albino rats. RESULTS: Findings of the research suggested that compounds G3, G4, G6, G8 and G11 possess higher binding affinity than diclofenac sodium, when docking was performed with enzyme COX-1. Compounds G1, G3, G6, G8andG10 showed lower binding affinity than Indometha-cin when docking was performed with enzyme COX-2.In vitro evaluation of the COX-1 and COX-2 enzyme inhibitory activities was performed for synthesized compounds. DISCUSSION: Compounds G10 and G11 exhibited significant COX-1 and COX-2 enzyme in-hibitory action with an IC50 value of 5.0 and 10 µM, respectively. Using the hot plate method and the carrageenan-induced rat paw edema model, the synthesized compounds were screened for their biological activities, including analgesic and anti-inflammatory activities. Highest analgesic action was exhibited by derivative G11 and the compound G10 showed the highest anti-inflammatory response. Inhibition of COX may be considered as a mechanism of action of these compounds. CONCLUSION: It was concluded that synthesized derivatives G10 and G11 exhibited significant analgesic and anti-inflammatory effect; therefore, the said compounds may be subjected to further clinical investigation for establishing these as future compounds for the treatment of pain and inflammation.

6.
J Biomol Struct Dyn ; : 1-13, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433403

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with a survival rate of <5 years. The TGF-ß plays a significant role in the progression and severity of IPF. The TGF-ß receptor type1 TGFBR1 antagonists inhibit the process of fibrosis and may have a role in the treatment of IPF. The main objective of the study was to identify promising drug candidates against IPF using In-silico and In-vitro evaluation methods. An in-silico screening was carried out of the marketed Coxibs to find their TGFBR1 inhibitory potential considering their structural resemblance with the JZO-a co-crystalized ligand of the crystal structure of the TGFBR1. The virtual screening yielded rofecoxib as a TGFBR1 ligand with a significant docking score. To further validate the outcome of molecular docking studies, MD simulation of 200 ns was carried out followed by the determination of conformational stability, binding free energy calculation using MMPBSA/MMGBSA, and Free Energy Landscape (FEL). The therapeutic efficacy of rofecoxib was compared with that of nintedanib (a therapeutic agent used in the treatment of IPF) at equimolar concentrations (5 µM). The model of TGF-ß1 (1 ng/ml)-induced EMT of A549 was used to determine the effect of rofecoxib on the EMT markers like cellular morphology, cytokine expressions, fibrosis associated protein, E-cadherin, and α-smooth muscle actin. In vitro results indicated that rofecoxib significantly suppresses the TGF-ß1-induced EMT of A549 cells and validates the possible preventive/protective role of rofecoxib in pulmonary fibrosis. In conclusion, rofecoxib may be considered for repositioning as an anti-fibrotic agent.Communicated by Ramaswamy H. Sarma.

7.
Pharm Pat Anal ; 12(6): 287-314, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38294336

RESUMEN

Quinoline inhibitors are appealing medicinal products for a range of illnesses and problems. It is bicyclic heterocyclic scaffold has been intensively employed in pharmacological research and is well known for its wide range of biological purposes. Biological activities exhibited by quinoline derivatives, such as anti-inflammatory properties, antioxidant, antimicrobial, anti-tubercular, antidiabetic, anti-malarial and others are covered in detail in this review. The IC50 of patented inhibitors might range from nm to µM range, based on the experiments used. It presents an outline of patents file between 2002 and 2023 concerning to biological activities by quinoline derivatives. As a result, it is critical to develop additional chemical quinoline core alterations for novel chemical compounds and enhanced pharmacological impacts.


Asunto(s)
Diseño de Fármacos , Quinolinas , Quinolinas/farmacología , Quinolinas/química , Antiinflamatorios/farmacología , Antioxidantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA