Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Crit Rev Food Sci Nutr ; 62(29): 7961-7975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33998934

RESUMEN

Consumers around the globe are increasingly aware of the relation between nutrition and health. In this sense, food products that can improve gastrointestinal health such as probiotics, prebiotics and synbiotics are the most important segment within functional foods. Cereals are the potential substrates for probiotic products as they contain nutrients easily assimilated by probiotics and serve as the transporters of Lactobacilli through the severe conditions of gastrointestinal tract. Barley is one of the important substrates for the probiotic formulation because of its high phenolic compounds, ß-glucans and tocols. The purpose of this review is to examine recent information regarding barley-based probiotic foods with a specific focus on the potential benefits of barley as a substrate for probiotic microorganisms in the development of dairy and nondairy based food products, and to study the effects of food matrices containing barley ß-glucans on the growth and features of Lactobacillus strains after fermentation.


Asunto(s)
Hordeum , Probióticos , beta-Glucanos , Lactobacillus , Prebióticos
2.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672486

RESUMEN

Medicinal plants and their derived compounds have drawn the attention of researchers due to their considerable impact on human health. Among medicinal plants, mint (Mentha species) exhibits multiple health beneficial properties, such as prevention from cancer development and anti-obesity, antimicrobial, anti-inflammatory, anti-diabetic, and cardioprotective effects, as a result of its antioxidant potential, combined with low toxicity and high efficacy. Mentha species are widely used in savory dishes, food, beverages, and confectionary products. Phytochemicals derived from mint also showed anticancer activity against different types of human cancers such as cervix, lung, breast and many others. Mint essential oils show a great cytotoxicity potential, by modulating MAPK and PI3k/Akt pathways; they also induce apoptosis, suppress invasion and migration potential of cancer cells lines along with cell cycle arrest, upregulation of Bax and p53 genes, modulation of TNF, IL-6, IFN-γ, IL-8, and induction of senescence phenotype. Essential oils from mint have also been found to exert antibacterial activities against Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa, and many others. The current review highlights the antimicrobial role of mint-derived compounds and essential oils with a special emphasis on anticancer activities, clinical data and adverse effects displayed by such versatile plants.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Mentha/química , Aceites Volátiles/farmacología , Fitoquímicos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Bacterias/efectos de los fármacos , Compuestos de Bifenilo/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Humanos , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Picratos/antagonistas & inhibidores
3.
Molecules ; 26(22)2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34834102

RESUMEN

Carissa, a genus of the Apocynaceae family, consists of evergreen species, such as shrubs as well as small trees that are native to Asia, Africa, and Oceania's subtropical and tropical regions. Most of the Carissa species are traditionally used to treat various diseases, such as chest pain, headaches, gonorrhoea, rheumatism, syphilis, oedema, rabies, stomach pain, hepatitis, cardiac diseases, and asthma. The pharmacological studies on Carissa species revealed its antioxidant, antimicrobial, anticancer, cardioprotective, antipyretic, analgesic, wound healing, anticonvulsant, antiarthritic, adaptogenic, anti-inflammatory, and antidiabetic activities, thus validating its use in indigenous medicine systems. The review article summarised the comprehensive literature available, including morphology, indigenous uses, bioactive composition, nutraceutical, and pharmacological activities of Carissa species. A total of 155 research papers were cited in this review article. The Carissa fruits are rich in dietary fibre, lipids, proteins, carbohydrates, vitamin C, and macro- and micro-elements. A total of 121 compounds (35 polyphenols (flavonoids and phenolic acids), 30 lignans, 41 terpenoids, 7 steroids, 2 coumarins, and 6 cardiac glycosides) have been extracted from C. spinarum, C. carandas, and C. macrocarpa. Among all chemical constituents, lupeol, carissol, naringin, carisssone, scopoletin, carissaeduloside A, D, J, carandinol, sarhamnoloside, carissanol, olivil, carinol, 3ß-hydroxyolean-11-en-28,13ß-oilde, ursolic acid, and carissone are the key bioactive constituents responsible for pharmacological activities of genus Carissa. The gathered ethnopharmacological information in the review will help to understand the therapeutic relevance of Carissa as well as paving a way for further exploration in the discovery of novel plant-based drugs.


Asunto(s)
Apocynaceae/química , Suplementos Dietéticos , Etnofarmacología , Fitoquímicos , Plantas Medicinales/química , África , Animales , Asia , Humanos , Fitoquímicos/química , Fitoquímicos/uso terapéutico
4.
Phytother Res ; 34(11): 2889-2910, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32515528

RESUMEN

Essential oils (EOs) are regarded as alternative therapeutic agents for many diseases. In phytotherapy research areas, it is now well reported that conifers are the rich source of EOs. This review aims to update information on the biological sources and the best extraction processes of the significant constituents along with the traditional and therapeutic properties of the EOs from selected conifers of Himachal Pradesh, Northwestern Himalaya. In the present review, ten conifer species of high values have been selected. Results from several studies suggest that the conifers contain monoterpenes, sesquiterpenes, diterpenes, ketones, alcohols, and esters, which are used in medicines, food products, and cosmetics as well as other commercial and industrial products. Traditionally, the EOs from the conifers have been reported to be used against fever, cough, bronchitis, skin diseases, gastrointestinal disorders, and asthma. The pharmacological studies suggest that these EOs can be used as antirheumatic, antiseptic, antispasmodic, anticancer, anti-inflammatory, antitoxic, aphrodisiac, and astringent agents. It is, therefore, concluded that the EOs from the conifers might be one of the promising tools for the treatment of various diseases. Extensive research is required to ascertain the efficacy of the EOs from unstudied conifers.


Asunto(s)
Aceites Volátiles/uso terapéutico , Tracheophyta/química , Humanos , Aceites Volátiles/farmacología
5.
Molecules ; 25(12)2020 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-32570836

RESUMEN

Fruits and vegetables are the highly used food products amongst the horticultural crops. These items are consumed uncooked, nominally cooked or fully cooked, according to their nature and cooking process. With the change in diet habits and rising population, the production, as well as the processing of horticultural crops, has exponentially improved to meet its increasing demand. A large amount of peel waste is generated from fruit and vegetable-based industries and household kitchen and has led to a big nutritional and economic loss and environmental problems. Processing of fruits and vegetables alone generates a significant waste, which amounts to 25-30% of the total product. Most common wastes include pomace, peels, rind and seeds, which are highly rich in valuable bioactive compounds such as carotenoids, enzymes, polyphenols, oils, vitamins and many other compounds. These bioactive compounds show their application in various industries such as food to develop edible films, food industries for probiotics and other industries for valuable products. The utilization of these low-cost waste horticultural wastes for producing the value-added product is a novel step in its sustainable utilization. The present review intends to summarize the different types of waste originating from fruits as well as vegetables peels and highlight their potential in developing edible films, probiotics, nanoparticles, carbon dots, microbial media, biochar and biosorbents.


Asunto(s)
Agricultura , Carotenoides , Frutas/química , Residuos Industriales , Aceites de Plantas , Polifenoles , Verduras/química , Carotenoides/química , Carotenoides/aislamiento & purificación , Aceites de Plantas/química , Aceites de Plantas/aislamiento & purificación , Polifenoles/química , Polifenoles/aislamiento & purificación
6.
Adv Synth Catal ; 360(13): 2503-2510, 2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-30559638

RESUMEN

A facile and broadly applicable method for the regiospecific N-arylation of benzotriazoles is reported. Copper-mediated reactions of diverse 1-hydroxy-1H-benzotriazoles with aryl boronic acids lead to 1-aryl-1H-benzotriazole 3-oxides. A N1-OH → N3 prototropy in the 1-hydroxy-1H-benzotriazoles is plausibly the underlying basis, where the tautomer is captured by the boronic acid, leading to C-N (not C-O) bond formation. Because the N-O bond in amine N-oxides and 1-hydroxy-1H-benzotriazoles can be easily reduced by diboron reagents such as (pinB)2 and B2(OH)4, exposure of the 1-aryl-1H-benzotriazole 3-oxides to B2(OH)4 then leads to facile reduction of the N-O bond resulting in diverse, regiospecifically-arylated benzotriazoles. Thus, the N-hydroxyl group in 1-hydroxy-1H-benzotriazoles acts as a disposable arylation director.

7.
Bioorg Med Chem Lett ; 27(9): 1923-1928, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28351589

RESUMEN

A robust economic approach to N-(quinazoline-4-yl)sulfonamides was developed and synthesized different aryl, hetero aryl, alkyl and cyclopropyl sulfonamides in excellent yields. All the compounds were evaluated for cytotoxic affinity to SKOV3, DU145, THP1, U937, and COLO205 cell lines. Interesting to find that the bulkiness of substituent at C-2 position of quinazoline forces the molecule to flip around in order to bind in the active site, when compared to the binding preference of previously known quinazoline compounds. Among the 21 compounds synthesized 2b, 2d, 2e, 2h, 2i, 3c, 3d, 3f, 3g and 3h found to be active on all the cell lines tested with IC50 values <10µg/mL. Performed docking simulations to understand the binding preference of various C-2 substituted quinazoline sulfonamides.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Quinazolinas/química , Quinazolinas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Antineoplásicos/síntesis química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Quinazolinas/síntesis química , Relación Estructura-Actividad , Sulfonamidas/síntesis química
8.
Molecules ; 20(10): 18437-63, 2015 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-26473811

RESUMEN

Cladribine, 2-chloro-2'-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2'-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.


Asunto(s)
Antineoplásicos/síntesis química , Cladribina/síntesis química , Guanosina/síntesis química , Leucocitos Mononucleares/efectos de los fármacos , Antineoplásicos/farmacología , Línea Celular Tumoral , Cladribina/farmacología , Guanosina/farmacología , Humanos , Concentración 50 Inhibidora , Leucemia de Células Pilosas/patología , Leucemia Linfocítica Crónica de Células B/patología , Leucocitos Mononucleares/patología , Linfoma de Células T/patología , Compuestos Organofosforados/química , Cultivo Primario de Células , Relación Estructura-Actividad
9.
J Food Sci Technol ; 52(3): 1642-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25745235

RESUMEN

Mung bean was subjected to different processing conditions (soaking, germination, cooking and autoclaving) and their textural, pasting and in vitro starch digestibility characteristics were studied. A significant reduction in textural properties (hardness, cohesiveness, gumminess and chewiness) after cooking and autoclaving treatment of mung bean was observed. Flours made from differently processed mung bean showed significant differences (P < 0.05) in their pastin g characteristics. Peak and final viscosity were the highest for flour from germinated mung bean whereas those made from autoclaved mung bean showed the lowest value. in vitro starch digestibility of mung bean flours was assessed enzymatically using modified Englyst method and the parameters studied were readily digestible starch (RDS), slowly digestible starch (SDS), resistant starch (RS) and total starch (TS) content. Various processing treatments increased the RDS contents of mung bean, while the SDS content was found to be the highest for soaked and the lowest for the autoclaved sample. Germinated sample showed higher amount of digestible starch (RDS + SDS) as compared to raw and soaked samples. Flours from raw and soaked samples showed significantly low starch hydrolysis rate at all the temperatures with total hydrolysis of 29.9 and 31.2 %, respectively at 180 min whereas cooked and autoclaved samples showed high hydrolysis rates with 50.2 and 53.8 % of these hydrolyzing within 30 min of hydrolysis.

10.
Mol Cancer ; 13: 259, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25466244

RESUMEN

BACKGROUND: Lung cancer is the major cause of cancer-related deaths and many cases of Non Small Cell Lung Cancer (NSCLC), a common type of lung cancer, have frequent genetic/oncogenic activation of EGFR, KRAS, PIK3CA, BRAF, and others that drive tumor growth. Some patients though initially respond, but later develop resistance to erlotinib/gefitinib with no option except for cytotoxic therapy. Therefore, development of novel targeted therapeutics is imperative to provide improved survival benefit for NSCLC patients. The mTOR cell survival pathway is activated in naïve, or in response to targeted therapies in NSCLC. METHODS: We have discovered P7170, a small molecule inhibitor of mTORC1/mTORC2/ALK1 and investigated its antitumor efficacy using various in vitro and in vivo models of human NSCLC. RESULTS: P7170 inhibited the phosphorylation of AKT, S6 and 4EBP1 (substrates for mTORC2 and mTORC1) levels by 80-100% and growth of NSCLC cells. P7170 inhibited anchorage-independent colony formation of NSCLC patient tumor-derived cells subsistent of disease sub-types. The compound also induced apoptosis in NSCLC cell lines. P7170 at a well-tolerated daily dose of 20 mg/kg significantly inhibited the growth of NSCLC xenografts independent of different mutations (EGFR, KRAS, or PIK3CA) or sensitivity to erlotinib. Pharmacokinetic-pharmacodynamic (PK-PD) analysis showed sub-micro molar tumor concentrations along with mTORC1/C2 inhibition. CONCLUSIONS: Our results provide evidence of antitumor activity of P7170 in the erlotinib -sensitive and -insensitive models of NSCLC.


Asunto(s)
Receptores de Activinas Tipo II/antagonistas & inhibidores , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Imidazoles/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Complejos Multiproteicos/antagonistas & inhibidores , Quinolinas/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I , Resistencia a Antineoplásicos/efectos de los fármacos , Receptores ErbB/farmacología , Clorhidrato de Erlotinib , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/farmacología , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/farmacología , Proteínas Proto-Oncogénicas p21(ras) , Quinazolinas/farmacología , Proteínas ras/farmacología
11.
Bioorg Med Chem Lett ; 24(24): 5587-5592, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25466180

RESUMEN

Nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) are gaining attention as potentially gastric-sparing NSAIDs. Herein, we report a novel class of '1-(nitrooxy)ethyl ester' group-containing NSAIDS as efficient NO releasing 'true' prodrugs of aspirin and naproxen. While an aspirin prodrug exhibited comparable oral bioavailability and antiplatelet activity (i.e., TXB2 inhibition) to those of aspirin, a naproxen prodrug exhibited better bioavailability than naproxen. These promising NO-NSAIDs protected experimental rats from gastric damage. We therefore believe that these promising NO-NSAIDs could represent a new class of potentially 'Safe NSAIDs' for the treatment of arthritic pain, inflammation and cardiovascular disorders in the case of NO-aspirin.


Asunto(s)
Aspirina/análogos & derivados , Naproxeno/análogos & derivados , Nitratos/química , Profármacos/química , Animales , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacocinética , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/toxicidad , Área Bajo la Curva , Aspirina/química , Aspirina/farmacocinética , Aspirina/farmacología , Aspirina/toxicidad , Plaquetas/efectos de los fármacos , Plaquetas/enzimología , Ciclooxigenasa 1/química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Diseño de Fármacos , Estabilidad de Medicamentos , Mucosa Gástrica/efectos de los fármacos , Semivida , Humanos , Naproxeno/química , Naproxeno/farmacocinética , Naproxeno/farmacología , Naproxeno/toxicidad , Nitratos/farmacocinética , Nitratos/farmacología , Nitratos/toxicidad , Óxido Nítrico/metabolismo , Inhibidores de Agregación Plaquetaria/química , Inhibidores de Agregación Plaquetaria/farmacocinética , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/toxicidad , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/toxicidad , Curva ROC , Ratas , Ratas Sprague-Dawley , Tromboxano B2/metabolismo
12.
J Food Sci Technol ; 51(9): 2092-8, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25190868

RESUMEN

Present studies were undertaken with the aim of screening a suitable mode of drying and packaging material for storage of chilgoza nuts. A temperature of 55 °C was found most suitable for the drying of nuts in cabinet drier. Cabinet drier was found the best drying mode among four for drying of chilgoza nuts on the basis of quality characteristics such as moisture, water activity and sensory attributes. Further, out of five packaging materials selected in the study, glass jar followed by aluminium laminate pouch was found to be suitable for the packing and storage of dried nuts in ambient conditions for 6 months on the basis of retention of better physico-chemical and sensory attributes.

13.
Int J Biol Macromol ; 270(Pt 2): 132220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754654

RESUMEN

Developing an edible and active coating, incorporating environmentally-friendly antimicrobial agents into edible polymers, provides an eco-friendly alternative to conventional packaging and exhibits significant potential in preserving the quality of postharvest food. Herein, we aim to develop a novel edible and active coating based on xanthan gum (XG) nanoemulsion (NE) incorporating betel leaf extract (BLE) for the preservation of fresh produce. The total phenolic content, total flavonoid content, and antioxidant capacity of the methanol extract of BLE at various concentrations were characterized. Further development of the active coating at different formulations of Tween 80 (1 % and 3 % w/v), XG (0.1 % to 0.5 % w/v), and BLE (1 % to 5 % w/v) was characterized by physical stability, viscosity, and antimicrobial properties. Results showed that the active coating at 1 % BLE showed significant antimicrobial properties against diverse bacterial and fungal foodborne pathogens (e.g., B. cereus, S. aureus) and fungal cultures (e.g., C. albicans). The study also examined the shelf-life of tomatoes coated with the BLE-XG NE solution, stored at 4 °C for 27 days. Analyses of weight retention, soluble solids, pH, texture, sensory attributes, and microbial populations showed that the coating effectively preserved tomato quality, highlighting its potential to preserve fresh produce and enhance food security.


Asunto(s)
Emulsiones , Conservación de Alimentos , Extractos Vegetales , Hojas de la Planta , Polisacáridos Bacterianos , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Hojas de la Planta/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Conservación de Alimentos/métodos , Antioxidantes/farmacología , Antioxidantes/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Viscosidad , Solanum lycopersicum/química , Pruebas de Sensibilidad Microbiana
14.
Food Chem ; 463(Pt 3): 141227, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39316900

RESUMEN

This study aims to investigate the physical stability, droplet size, zeta potential, and antimicrobial properties of nanoemulsions formulated with betel leaf extract using ß-cyclodextrin (CD) and sodium alginate (SA) biopolymers. Nanoemulsions with ß-cyclodextrin exhibit superior stability at lower temperatures, with limited droplet size, and strong electrostatic repulsion. Morphological images demonstrate the successful encapsulation of betel leaf extract within both biopolymers, highlighting their potential for antimicrobial applications. Both CD and SA nanoemulsions display inhibitory effects on bacterial strains (E. coli, P. aeruginosa, L. monocytogenes, S. aureus, and B. cereus) and fungal growth (A. brasiliensis, R. stolonifer, F. oxysporum, and C. albicans). SA nanoemulsions show higher antimicrobial activity due to H+ ion release, particularly against A. brasiliensis and C. albicans. These findings underscore the potential of betel leaf extract nanoemulsions, especially those with SA, for various antimicrobial applications for sustainable food packaging, highlighting their significance in addressing microbial challenges.

15.
Materials (Basel) ; 16(13)2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37445154

RESUMEN

Environmental concerns regarding the usage of nonrenewable materials are driving up the demand for biodegradable marine biopolymers. Marine biopolymers are gaining increasing attention as sustainable alternatives in various industries, including the food sector. This review article aims to provide a comprehensive overview of marine biopolymers and their applications in the food industry. Marine sources are given attention as innovative resources for the production of sea-originated biopolymers, such as agar, alginate, chitin/chitosan, and carrageenan, which are safe, biodegradable, and are widely employed in a broad spectrum of industrial uses. This article begins by discussing the diverse source materials of marine biopolymers, which encompass biopolymers derived from seaweed and marine animals. It explores the unique characteristics and properties of these biopolymers, highlighting their potential for food applications. Furthermore, this review presents a classification of marine biopolymers, categorizing them based on their chemical composition and structural properties. This classification provides a framework for understanding the versatility and functionality of different marine biopolymers in food systems. This article also delves into the various food applications of marine biopolymers across different sectors, including meat, milk products, fruits, and vegetables. Thus, the motive of this review article is to offer a brief outline of (a) the source materials of marine biopolymers, which incorporates marine biopolymers derived from seaweed and marine animals, (b) a marine biopolymer classification, and (c) the various food applications in different food systems such as meat, milk products, fruits, and vegetables.

16.
Metabolites ; 13(5)2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37233665

RESUMEN

Overall, combating food waste necessitates a multifaceted approach that includes education, infrastructure, and policy change. By working together to implement these strategies, we can help reduce the negative impacts of food waste and create a more sustainable and equitable food system. The sustained supply of nutrient-rich agrifood commodities is seriously threatened by inefficiencies caused by agricultural losses, which must be addressed. As per the statistical data given by the Food and Agriculture Organisation (FAO) of the United Nations, nearly 33.33% of the food that is produced for utilization is wasted and frittered away on a global level, which can be estimated as a loss of 1.3 billion metric tons per annum, which includes 30% cereals, 20% dairy products 35% seafood and fish, 45% fruits and vegetables, and 20% of meat. This review summarizes the various types of waste originating from various segments of the food industry, such as fruits and vegetables, dairy, marine, and brewery, also focusing on their potential for developing commercially available value-added products such as bioplastics, bio-fertilizers, food additives, antioxidants, antibiotics, biochar, organic acids, and enzymes. The paramount highlights include food waste valorization, which is a sustainable yet profitable alternative to waste management, and harnessing Machine Learning and Artificial Intelligence technology to minimize food waste. Detail of sustainability and feasibility of food waste-derived metabolic chemical compounds, along with the market outlook and recycling of food wastes, have been elucidated in this review.

17.
Food Chem ; 418: 135916, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37001356

RESUMEN

In recent years, there has been considerable growth in the creation of edible films and coatings, which is predicted to have a major impact on fruit quality in the coming years. Consumers want fresh fruits that are pesticide-free, good quality, high nutritional value, and a long shelf life. The use of edible coatings and films on fruits is an environmentally dependable approach to a creative solution to this problem. The application, recent trends, and views of coatings and edible films, as well as their impact on fruit quality, are presented in this article, along with a knowledge of their key roles and benefits. According to numerous studies, natural polymers are highly suited for use as packaging material for fresh fruits and can often be a viable alternative to synthetic chemicals. Plasticisers, surfactants, cross-linkers, antimicrobial agents, functional additives, nanoparticles, and fruit and vegetable residues can be used to alter the properties of edible coatings.


Asunto(s)
Películas Comestibles , Conservación de Alimentos , Embalaje de Alimentos , Frutas , Verduras
18.
Chem Pharm Bull (Tokyo) ; 60(4): 465-81, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22466730

RESUMEN

In continuation of our efforts to discover novel nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) as potentially "Safe NSAIDs," we report herein the design, synthesis and evaluation of 21 new NO-NSAIDs of commonly used NSAIDs such as aspirin, diclofenac, naproxen, flurbiprofen, ketoprofen, sulindac, ibuprofen and indomethacin. These prodrugs have NO-releasing disulfide linker attached to a parent NSAID via linkages such as an ester (compounds 9-16), a double ester (compounds 17-24), an imide (compounds 25-30) or an amide (compounds 31-33). Among these NO-NSAIDs, the ester-containing NO-aspirin (9), NO-diclofenac (10), NO-naproxen (11), and the imide-containing NO-aspirin (25), NO-flurbiprofen (27) and NO-ketoprofen (28) have shown promising oral absorption, anti-inflammatory activity and NO-releasing property, and also protected rats from NSAID-induced gastric damage. NO-aspirin compound 25, on further co-evaluation with aspirin at equimolar doses, exhibited comparable dose-dependent pharmacokinetics, inhibition of gastric mucosal prostaglandin E(2) (PGE(2)) synthesis and analgesic properties to those of aspirin, but retained its gastric-sparing properties even after doubling its oral dose. These promising NO-NSAIDs could therefore represent a new class of potentially "Safe NSAIDs" for the treatment of arthritic pain and inflammation.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Óxido Nítrico/metabolismo , Profármacos/química , Amidas/síntesis química , Amidas/química , Animales , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/farmacocinética , Área Bajo la Curva , Diseño de Fármacos , Ésteres , Imidas/síntesis química , Imidas/química , Masculino , Profármacos/síntesis química , Profármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Ratas Wistar
19.
J Am Nutr Assoc ; 41(3): 291-300, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33856969

RESUMEN

OBJECTIVE: Loss of vital bioactive components of Ficus palmata fruit extract during food processing is a major issue. Therefore, to retain the antioxidant potential and to increase the mineral bioavailability, gum arabic stabilized nanoemulsion of Fig fruit extract was prepared. METHOD: . Nanoemulsion was formulated using three different levels (1, 3, and 5%) of fig extract, however, to optimize the fig extract concentration, the amount of gum arabic and linoleic acid was kept constant. RESULTS: The average droplet size of nanoemulsion was observed in the range of 22.88-37.87 nm, whereas the Fourier Transform Infrared (FTIR) Spectroscopy confirmed the presence of functional groups in the emulsion system. Also, increased ionic concentration significantly (p < 0.05) increased the average droplet size and zeta potential of nanoemulsion during storage. Increased shear rate and temperature unveiled a slight decrease in apparent viscosity of the nanoemulsion. Non-significant (p < 0.05) difference in TBA value confirmed the oxidative stability of the emulsion. Significantly (p < 0.05) higher mineral bioavailability for calcium was observed as compared to iron and zinc. CONCLUSION: Our results manifested improved anti-oxidant activity, mineral bioavailability, and oxidative stability of Fig extract nanoemulsion, suggesting its potential use as a therapeutic alternative.


Asunto(s)
Ficus , Antioxidantes/análisis , Emulsiones/análisis , Frutas/química , Goma Arábiga/análisis , Minerales/análisis , Extractos Vegetales/análisis
20.
Biomed Res Int ; 2022: 2188940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35993055

RESUMEN

Pharmaceutical excipients are compounds or substances other than API which are added to a dosage form, these excipients basically act as carriers, binders, bulk forming agents, colorants, and flavouring agents, and few excipients are even used to enhance the activity of active pharmaceutical ingredient (API) and various more properties. However, despite of these properties, there are problems with the synthetic excipients such as the possibility of causing toxicity, inflammation, autoimmune responses, lack of intrinsic bioactivity and biocompatibility, expensive procedures for synthesis, and water solubility. However, starch as an excipient can overcome all these problems in one go. It is inexpensive, there is no toxicity or immune response, and it is biocompatible in nature. It is very less used as an excipient because of its high digestibility and swelling index, high glycemic index, paste clarity, film-forming property, crystalline properties, etc. All these properties of starch can be altered by a few modification processes such as physical modification, genetic modification, and chemical modification, which can be used to reduce its digestibility and glycemic index of starch, improve its film-forming properties, and increase its paste clarity. Changes in some of the molecular bonds which improve its properties such as binding, crystalline structure, and retrogradation make starch perfect to be used as a pharmaceutical excipient. This research work provides the structural modifications of native starch which can be applicable in advanced drug delivery. The major contributions of the paper are advances in the modification of native starch molecules such as physically, chemically, enzymatically, and genetically traditional crop modification to yield a novel molecule with significant potential for use in the pharmaceutical industry for targeted drug delivery systems.


Asunto(s)
Excipientes , Almidón , Sistemas de Liberación de Medicamentos , Excipientes/química , Solubilidad , Almidón/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA