Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
RNA Biol ; 19(1): 908-915, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35829618

RESUMEN

The RNase III family of dsRNA-specific endonucleases is exemplified by prokaryotic RNase III and eukaryotic Rnt1p, Drosha, and Dicer. Structures of Aquifex aeolicus RNase III (AaRNase III) and Saccharomyces cerevisiae Rnt1p (ScRnt1p) show that both enzymes recognize substrates in a sequence-specific manner and propel RNA hydrolysis by two-Mg2+-ion catalysis. Previously, we created an Escherichia coli RNase III variant (EcEEQ) by eliminating the sequence specificity via protein engineering and called it bacterial Dicer for the fact that it produces heterogeneous small interfering RNA cocktails. Here, we present a 1.8-Å crystal structure of a postcleavage complex of EcEEQ, representing a reaction state immediately after the cleavage of scissile bond. The structure not only establishes the structure-and-function relationship of EcEEQ, but also reveals the functional role of a third Mg2+ ion that is involved in RNA hydrolysis by bacterial RNase III. In contrast, the cleavage site assembly of ScRnt1p does not contain a third Mg2+ ion. Instead, it involves two more amino acid side chains conserved among eukaryotic RNase IIIs. We conclude that the EcEEQ structure (this work) represents the cleavage assembly of prokaryotic RNase IIIs and the ScRnt1p structure (PDB: 4OOG), also determined at the postcleavage state, represents the cleavage assembly of eukaryotic RNase IIIs. Together, these two structures provide insights into the reaction trajectory of two-Mg2+-ion catalysis by prokaryotic and eukaryotic RNase III enzymes.


Asunto(s)
Magnesio/metabolismo , Ribonucleasa III , Proteínas de Saccharomyces cerevisiae , Biocatálisis , Catálisis , ARN Bicatenario , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
2.
Annu Rev Genet ; 47: 405-31, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24274754

RESUMEN

RNase III is a global regulator of gene expression in Escherichia coli that is instrumental in the maturation of ribosomal and other structural RNAs. We examine here how RNase III itself is regulated in response to growth and other environmental changes encountered by the cell and how, by binding or processing double-stranded RNA (dsRNA) intermediates, RNase III controls the expression of genes. Recent insight into the mechanism of dsRNA binding and processing, gained from structural studies of RNase III, is reviewed. Structural studies also reveal new cleavage sites in the enzyme that can generate longer 3' overhangs.


Asunto(s)
Ribonucleasa III/fisiología , Regiones no Traducidas 3'/genética , Regiones no Traducidas 5'/genética , Secuencias de Aminoácidos , Bacteriófago lambda/genética , Catálisis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Células Eucariotas/enzimología , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico , Operón , Células Procariotas/enzimología , Procesamiento Proteico-Postraduccional , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Bacteriano/metabolismo , ARN Bicatenario/metabolismo , ARN Ribosómico/metabolismo , ARN Pequeño no Traducido/genética , Ribonucleasa III/química , Ribonucleasa III/clasificación , Ribonucleasa III/genética , Relación Estructura-Actividad , Especificidad por Sustrato , Virosis/genética
3.
Bioorg Med Chem ; 29: 115847, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33199204

RESUMEN

6-Hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) is a key enzyme in the folate biosynthesis pathway. It catalyzes pyrophosphoryl transfer from ATP to 6-hydroxymethyl-7,8-dihydropterin (HP). HPPK is essential for microorganisms but absent in mammals; therefore, it is an attractive target for developing novel antimicrobial agents. Previously, based on our studies of the structure and mechanism of HPPK, we created first-generation bisubstrate inhibitors by linking 6-hydroxymethylpterin to adenosine through phosphate groups, and developed second-generation inhibitors by replacing the phosphate bridge with a linkage that contains a piperidine moiety. Here, we report third-generation inhibitors designed based on the piperidine-containing inhibitor, mimicking the transition state. We synthesized two such inhibitors, characterized their protein-binding and enzyme inhibition properties, and determined their crystal structures in complex with HPPK, advancing the development of such bisubstrate analog inhibitors.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Piperidinas/farmacología , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Difosfotransferasas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Modelos Moleculares , Estructura Molecular , Piperidinas/síntesis química , Piperidinas/química , Pterinas/química , Pterinas/metabolismo , Relación Estructura-Actividad
4.
J Biol Chem ; 290(39): 23656-69, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26272746

RESUMEN

Members of the Swi2/Snf2 (switch/sucrose non-fermentable) family depend on their ATPase activity to mobilize nucleic acid-protein complexes for gene expression. In bacteria, RapA is an RNA polymerase (RNAP)-associated Swi2/Snf2 protein that mediates RNAP recycling during transcription. It is known that the ATPase activity of RapA is stimulated by its interaction with RNAP. It is not known, however, how the RapA-RNAP interaction activates the enzyme. Previously, we determined the crystal structure of RapA. The structure revealed the dynamic nature of its N-terminal domain (Ntd), which prompted us to elucidate the solution structure and activity of both the full-length protein and its Ntd-truncated mutant (RapAΔN). Here, we report the ATPase activity of RapA and RapAΔN in the absence or presence of RNAP and the solution structures of RapA and RapAΔN either ligand-free or in complex with RNAP. Determined by small-angle x-ray scattering, the solution structures reveal a new conformation of RapA, define the binding mode and binding site of RapA on RNAP, and show that the binding sites of RapA and σ(70) on the surface of RNAP largely overlap. We conclude that the ATPase activity of RapA is inhibited by its Ntd but stimulated by RNAP in an allosteric fashion and that the conformational changes of RapA and its interaction with RNAP are essential for RNAP recycling. These and previous findings outline the functional cycle of RapA, which increases our understanding of the mechanism and regulation of Swi2/Snf2 proteins in general and of RapA in particular. The new structural information also leads to a hypothetical model of RapA in complex with RNAP immobilized during transcription.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulación Alostérica , ARN Polimerasas Dirigidas por ADN/química , Escherichia coli/enzimología , Conformación Proteica , Dispersión del Ángulo Pequeño , Transcripción Genética , Difracción de Rayos X
5.
Curr Res Struct Biol ; 5: 100095, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36820301

RESUMEN

Dihydroneopterin aldolase (DHNA) is essential for folate biosynthesis in microorganisms. Without a counterpart in mammals, DHNA is an attractive target for antimicrobial agents. Helicobacter pylori infection occurs in human stomach of over 50% of the world population, but first-line therapies for the infection are facing rapidly increasing resistance. Novel antibiotics are urgently needed, toward which structural information on potential targets is critical. We have determined the crystal structure of H. pylori DHNA (HpDHNA) in complex with a pterin molecule (HpDHNA:Pterin) at 1.49-Å resolution. The HpDHNA:Pterin complex forms a tetramer in crystal. The tetramer is also observed in solution by dynamic light scattering and confirmed by small-angle X-ray scattering. To date, all but one reported DHNA structures are octameric complexes. As the only exception, ligand-free Mycobacterium tuberculosis DHNA (apo-MtDHNA) forms a tetramer in crystal, but its active sites are only partially formed. In contrast, the tetrameric HpDHNA:Pterin complex has well-formed active sites. Each active site accommodates one pterin molecule, but the exit of active site is blocked by two amino acid residues exhibiting a contact distance of 5.2 â€‹Å. In contrast, the corresponding contact distance in Staphylococcus aureus DHNA (SaDHNA) is twice the size, ranging from 9.8 to 10.5 â€‹Å, for ligand-free enzyme, the substrate complex, the product complex, and an inhibitor complex. This large contact distance indicates that the active site of SaDHNA is wide open. We propose that this isozyme-specific contact distance (ISCD) is a characteristic feature of DHNA active site. Comparative analysis of HpDHNA and SaDHNA structures suggests a fragment-based strategy for the development of isozyme-specific inhibitors.

6.
Artículo en Inglés | MEDLINE | ID: mdl-20445258

RESUMEN

Francisella tularensis, a potential bioweapon, causes a rare infectious disease called tularemia in humans and animals. The macrophage growth locus A (MglA) protein from F. tularensis associates with RNA polymerase to positively regulate the expression of multiple virulence factors that are required for its survival and replication within macrophages. The MglA protein was overproduced in Escherichia coli, purified and crystallized. The crystals diffracted to 7.5 A resolution at the Advanced Photon Source, Argonne National Laboratory and belonged to the hexagonal space group P6(1) or P6(5), with unit-cell parameters a = b = 125, c = 54 A.


Asunto(s)
Proteínas Bacterianas/química , Francisella tularensis/química , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Expresión Génica
7.
FEBS J ; 287(9): 1865-1885, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31679177

RESUMEN

Rapid adaptation to environmental changes is crucial for bacterial survival. Almost all bacteria possess a conserved stringent response system to prompt transcriptional and metabolic responses toward stress. The adaptive process relies on alarmones, guanosine pentaphosphate (pppGpp), and tetraphosphate (ppGpp), to regulate global gene expression. The ppGpp is more potent than pppGpp in the regulatory activity, and pppGpp phosphohydrolase (GppA) plays a key role in (p)ppGpp homeostasis. Sharing a similar domain structure, GppA is indistinguishable from exopolyphosphatase (PPX), which mediates the metabolism of cellular inorganic polyphosphate. Here, our phylogenetic analysis of PPX/GppA homologs in bacteria shows a wide distribution with several distinct subfamilies, and our structural and functional analysis of Escherichia coli GppA and Helicobacter pylori PPX/GppA reveals unique properties of each homolog. These results explain how each homolog possesses its distinct functionality.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Ácido Anhídrido Hidrolasas/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Guanosina Pentafosfato/metabolismo , Helicobacter pylori/enzimología , Helicobacter pylori/metabolismo , Secuencia de Aminoácidos , Guanosina Pentafosfato/química , Modelos Moleculares , Estructura Molecular , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Alineación de Secuencia
8.
Structure ; 25(2): 353-363, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28111020

RESUMEN

Double-stranded RNA (dsRNA)-specific RNase III proteins are required for RNA maturation and gene regulation. The mechanism of prokaryotic RNase IIIs has been well characterized, but how eukaryotic RNase IIIs (exemplified by Rnt1p, Drosha, and Dicer) work is less clear. Recently, we reported the crystal structure of Rnt1p in complex with RNA, revealing a double-ruler mechanism for substrate selection. Here, we present more structures of Rnt1p, either RNA free or RNA bound, featuring two major conformations of the enzyme. Using these structures with existing data, we describe the functional cycle of Rnt1p in five steps, selecting, loading, locking, cleavage, and releasing. We also describe atomic details of the two-Mg2+-ion catalytic mechanism that is applicable to all eukaryotic RNase III enzymes. Overall, our results indicate that substrate selection is achieved independent of cleavage, allowing the recognition of substrates with different structures while preserving the basic mechanism of cleavage.


Asunto(s)
ARN Helicasas DEAD-box/química , Magnesio/química , ARN Bicatenario/química , Ribonucleasa III/química , Proteínas de Saccharomyces cerevisiae/química , Secuencia de Aminoácidos , Sitios de Unión , Cationes Bivalentes , Cristalografía por Rayos X , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Expresión Génica , Humanos , Magnesio/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína , Especificidad por Sustrato
9.
FEBS J ; 281(18): 4123-37, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24975935

RESUMEN

UNLABELLED: Two valid targets for antibiotic development, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK) and dihydropteroate synthase (DHPS), catalyze consecutive reactions in folate biosynthesis. In Francisella tularensis (Ft), these two activities are contained in a single protein, FtHPPK-DHPS. Although Pemble et al. (PLoS One 5, e14165) determined the structure of FtHPPK-DHPS, they were unable to measure the kinetic parameters of the enzyme. In this study, we elucidated the binding and inhibitory activities of two HPPK inhibitors (HP-18 and HP-26) against FtHPPK-DHPS, determined the structure of FtHPPK-DHPS in complex with HP-26, and measured the kinetic parameters for the dual enzymatic activities of FtHPPK-DHPS. The biochemical analyses showed that HP-18 and HP-26 have significant isozyme selectivity, and that FtHPPK-DHPS is unique in that the catalytic efficiency of its DHPS activity is only 1/260,000 of that of Escherichia coli DHPS. Sequence and structural analyses suggest that HP-26 is an excellent lead for developing therapeutic agents for tularemia, and that the very low DHPS activity is due, at least in part, to the lack of a key residue that interacts with the substrate p-aminobenzoic acid (pABA). A BLAST search of the genomes of ten F. tularensis strains indicated that the bacterium contains a single FtHPPK-DHPS. The marginal DHPS activity and the single copy existence of FtHPPK-DHPS in F. tularensis make this bacterium more vulnerable to DHPS inhibitors. Current sulfa drugs are ineffective against tularemia; new inhibitors targeting the unique pABA-binding pocket may be effective and less subject to resistance because any mutations introducing resistance may make the marginal DHPS activity unable to support the growth of F. tularensis. DATABASE: The coordinates and structure factors have been deposited in the Protein Data Bank under accession code 4PZV.


Asunto(s)
Antibacterianos/química , Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Francisella tularensis/enzimología , Complejos Multienzimáticos/química , Secuencia de Aminoácidos , Armas Biológicas , Dominio Catalítico , Cristalografía por Rayos X , Ácido Fólico/biosíntesis , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/antagonistas & inhibidores , Unión Proteica , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA